Cerebral Cortex

Brain’s most complex area with
billions of neurons and trillions of
synapses: the tissue responsible
for mental activities:
consciousness, perceives
sensations, skilled movements,
emotional awareness, memory,
thinking, language ability,
motivation



\s Your Brain Really Necessary,

John Lorber, Science 210:1232 (1980)

“There a young student at this university who has an IQ of 126, has gained a
first-class honors degree in mathematics, and is socially completely normal. And
yet the boy has virtually no brain."

"The student’s physician at the university noticed that the student had slightly
larger than normal head... When we did a brain scan on him we saw that instead

of the normal 4.5 cm thickness of brain tissue there was just a millimeter or so.
His cranium is filled with CSF."

How is this possible?
What does it tell us?

Do you think this
would be OK if it
happened to an adult?
To a 15 year old? To a
5 year old? To a
neonate?




Types of Cerebral Cortex

Neocortex
- Newest in evolution
- About 90% of total
- 6 layers, most complex

Paleocortex

- Associated with olfactory system, the
parahippocampal gyrus, uncus

- fewer than 6 layers

Archicortex

- Hippocampal formation; limbic system
- 3 layers, most primitive

Mesocortex

- Cingulate gyrus, insular cortex

- Transitional between archicortex and
heocortex




The perks of having a neocortex

The words used to describe the higher mental
capacities of animals with a large neocortex
include: A

- CONSCIOUSNESS
- FREE WILL

- INTELLIGENCE

- INSIGHT

Animals with much simpler brains learn well, so r
LEARNING should not be among these capacities
(Macphail 1982).

A species could have genetically determined
mechanisms, acquired through evolutionary
selection, for taking advantage of the regular 0
features of the environment, or they could have

learned through direct experience.



Histology of the Cerebral Cortex

Neocortex has 6

layers designated I,

IT, ITT, IV, V, VI

Pyramidal cells
predominate in
layers IIT and V

Granule cells in
layers IT and IV

(a) Six layers of cortex (b) A single pyramidal neuron
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Pyramidal neurons

Have large apical
dendrite and basal
dendrites

Similar orientation

Process input from
many sources

Axon projects
downward into
subcortical white
matter

Pyramidal cell is the
primary output
cortical neuron (Betz
cells)




Dendritic Spines

- Spines become
more complex in
early years
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Layers

Molecular layer
Horizontal connections
External granular layer

Small granule cells,
intracortical connections

External pyramidal layer

Smaller pyramids, callosal
and intracortical outputs

Internal granular layer

Larger granular cells,
inputs from primary
sensory thalamic nuclei

Internal pyramidal layer

Larger pyramids, main
output to subcortex

Fusiform or multiform layer

Mixture of cell types, main
output to thalamus

of neocortex

(@) Six layers of cortex (b) A single pyramidal neuron
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Types of Cortex

Cytoarchitecture
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varies in
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Figure 17-5

-stained sections through three sensorimotor areas 1o show differences in

Photomicrographs of Nissl

ensory cortex (area 3): first somatosensory associa-

tion cortex (area 5); motor cortex (area 4). Notice the highly graunular layers Il and IV in area 3

and large pyramidal neurons in the deep part of layer 111 in area 5 and in layer V of area 4.

cytoarchitectural organization: primary somatos




Anatomically the cortex is
divided into 6 lobes:

frontal, parietal, temporal,
occipital, limbic and insular

Each lobe has several gyri

Functionally the cortex is
divided intfo numbered areas
first proposed by Brodmann
in 1909

Brodmann's areas were
described based on
cytoarchitecture; later they
were found to be
functionally significant

B. Brodmann areas

1 8-6. Lateral views of lelt hemisphere. Ao Gyt and sulei. B, Bradmann areas,



Cortical Columns

Run vertically across all six layers

Thousands of neurons in synaptic contact

Main input layer is layer IV which receives thalamic input

Are the basic units of the peripheral representation in the sensory cortex (e.g.
retinotopy or tonotopy)

Within a column neurons have similar response properties (e.g. characteristic
frequency in the auditory cortex).
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Cortical
Connections

Intracortical fibers
Association fibers
Commissural fibers
Projection fibers




Cortical Connections

» Intracortical fibers
- short, project to nearby cortical areas

- most from horizontal neurons in layer T

- some from horizontal axon collaterals
from pyramidal cells
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Cortical Connections

- Association fibers

gyrus to gyrus and lobe fo lobe in the same hemisphere
arcuate fibers connect adjacent gyri

long association fibers connect distant gyri

originate from pyramidal neurons in layers IT and ITIT

Arcuate loop

Parietal lobe

Superior
longitudinal
fasciculus

Frontal lobe

Insula

Uncinate fasciculus

Inferior occipito-
frontal

Arcuate fasciculus
Temporal lobe
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Cortical Connections

+ Commissural fibers
- connect homologous areas of the two hemispheres
- Corpus callosum: rostrum, genu, trunk, splenium
* rostrum & genu connect frontal lobes

- trunk connects posterior frontal lobes, parietal lobes, and
superior temporal lobe

- splenium connects the occipital lobes
- Originate with pyramidal neurons in layers IT and ITT

Trunk of corpus callosum

Frontal or parietal gyri

Lateral fissur

Middle temporal gyr

Inferior temporal gyrus

Amygdaloid nucleus

FIGURE 15-48. Connestions of anterior commissure and trunk of corpus callosum.




Cortical Connections

+ Projection fibers connect cortex with

subcortical neurons
- corticofugal/efferent, project from cortex
- corticopetal/afferent, project to cortex

» Corticofugal project to corpus striatum,
brainstem, and spinal cord

+ Corticopetal projections arise mainly from the
thalamus - the thalamic radiations

+ Internal capsule carries most of these
cohnections
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DV patterning in the CNS

Dorsal root ganglion
interneurons sensory neurons

interneurons

Motor neurons

~

Cerebral c

cortex
To lateral

tectum

Lateral
ganglionic
eminence
(striatum)

Ventral
retinal
ganglion
cell

Medial ganglionic
eminence (pallidum)




Development of the Cortex
Forebrain patterning
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Patterning Centers in the Forebrain

Bmp4, Wnt3a
Fgf8

Shh




How does this happen?

a Spinal cord

| PAX7 IRX3 PAX6 (ventrally)
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Forebrain progenitor zone
domains
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Neural Plate
Patterning Centers
Longitudinal Zones
Neurulation
Evagination of Optic and Telencephalic Vesicles

Rubenstein and Puelles, 2003




Diverse Modes of Morphogenesis of the
Telencephalon in Vertebrates

(Fish)

EVAGINATION EVERSION




Cortical signaling centers




When forebrain patterning
goes awry -
Holoprosencephaly

(@) wild type (b) Shh mutant

# Emx1 W Dix2 Nkx2.1 % Shh

Amazingly common, many loci 27




Human Shh mutants




Human Six3 mutants
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HPE pathology

Fig. 4. Human holoprosencephaly. Anterior views of the CNS from an
| 8-week gestation human fetus with holoprosencephaly (a) and a nor-
mal |3-week fetus (b). The fetus with holoprosencephaly has a single
forebrain vesicle (‘holosphere’) and a cortex that is continuous across
the dorsal midline, due to the lack of relative invagination of the roof
plate region.



Neonatal Rodent Forebrain: “Dorsoventral”
Subdivisions of the Cortex
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Topographic Conservation of
Relative Positions of Primary
Sensory Areas
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L. Krubitzer, D.M. Kahn/Progress in Neurobiology 70 (2003) 33-52
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Control of Cortex Size Is Mediated
in Part Through Control of
Progenitor Cell Properties

Mouse




Radial Cortical Organization

E12

E10

E8.5



Histology of the Cerebral Cortex

Neocortex has 6

layers designated I,

IT, ITT, IV, V, VI

Pyramidal cells
predominate in
layers IIT and V

Granule cells in
layers IT and IV

(a) Six layers of cortex (b) A single pyramidal neuron
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Models of Radial Organization

Are there different kinds of progenitors?
(layer 1-specific progenitor)

Does one progenitor make all cell layers?

LINEAGE MODEL INSTRUCTIONAL MODEL
00000 ® 1
2/3 ® 2/3
4 ® 4
5 () 5
6 @® 6
® @
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Birthdating

Neuronal Birthdating with 3H-thymidine

» 3H-thymidine is incorporated into the DNA during the S-phase
(replication of DNA)

« It marks all mitotic cells M-G1
* Quantitative technique ' ‘
- It disappears in ~2-4 generations. G2 S
O O O
OO.O—> ® — O — O O
OO O O OO
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4 >

3H-thymidine time
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Lineage Tracing

Lineage Tracing

« Use replication incompetent retrovirus (incorporated into a cell’s
genomic DNA but not infectious)

 The virus DNA will be inherited by all the daughter cells (it
doesn’t become diluted)

S ® CY
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OO ® ® e

A o e
time
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Are there layer specific
progenitors?
Are there layer-specific progenitors?

Expt: Use lineage tracing to label single neurons and follo\
their progeny.

1

CP *e® 2
Vi o ® 3
- ol o 4

e O 5

VZ oo 8 p—— :

Result: Single cells generate neurons in multiple layers.
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What is the timing?

Different layers form at different developmental times

“Inside First-Outside Last” development of cortical layers

1 Post-natal Day 2 (P2)

2/3

Born Last

Born First 6 Embryonic Day 26 (E26)

Dev Time
000000
H
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Young precursors are plastic

Does the environment instruct the layer fate?

Expt: Transplant Progenitor cells from early stage to late stage

What would they normally become?
What do they become when the host environment is changed?

E36 Birthdating B P2 Birthdating B E36 into P2

1 ! 1
4 4 4
Layer & P Layer & Layer 5
uwm Lwm UWm
m wim wm

5 50 [ 100 (" ;IS 5::' 7‘5 1 CI'C‘ 5, zlg, fl, ,7|5 1\;"@

% 3H-thymidine labeled cells % 3H-thymidine labeled cels % 3H-thymidine labeled cells
Most are layer 4 Most are layer2/3 Most are layer 2/3
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Precursors age through

gestation

Expt: Transplant Progenitor cells from late stage to early stage

What would they normally become?
What do they become when the host environment is changed?

E36 Birthdating

% 3H-thymidine labeled cells

1 c::n:n

wim

wim

E30 Birthdating

T

% 3H-thymidine labeled cells

E36 into E30
1
4
ar
Lwim
wim
! & 1

% 3H-thymidine labeled cells
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How might this work?

(a)
Cleavage plane
correlates with asymmetry

Basal/v$

OEIQN

Apical

ITE00

Current Opinion in Neurobiology

(b)
Morphology
correlates with asymmetry

(c)
Intrinsic determinants
dictate asymmetry

determining
signal

Asymmetric divisions plus a clock account for this phenomenon
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Temporal Control of
Symmetrical and
Asymmetrical Mitoses
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Fishell and Kriegstein, 2003



Time of leaving the cell cycle
correlates with laminar fate

Earliest: Preplate
Middle: Deep layers
Late: Superficial layers

Kriegstein and Noctor, TINS 2004



Early Development of the Cortex:
Preplate, Cortical Plate, Marginal
Zone and Subplate

Uylings et al., 1990




Genesis of Cortical Neurons:
Inside-Out laminar organization
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Hevner et al., 2003



Glutamatergic Neurons in Different Layers Have Distinct
Connectivity Properties

Layers 2 & 3: Intracortical projections

Layer 4: Thalamorecipient
Layer 5: Projects to subcortical areas

Layer 6: Projects to thalamus




Making the 3rd Dimension:
Radi

Rakic, 1987




Tangential Migrations from the Basal
Telencephalon of GABAergic
Interneurons to the Cortex

Marin and Rubenstein 2001




Interactions of Migrating Neurons With Radial Glia

Ventral-derived
interneurons

Cortical-derived
pyramidal neurons

TRENDS in Neurosciences

Kriegstein and Noctor, 2004




Early Development of the
Cortex: Preplate, Cortical Plate,
Marginal Zone and Subplate

Uylings et al., 1990




Developmental Organization of Cortical
Lamination

Super &
Uylings, 2001
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Classes of Mutations that Perturb Cortical Migration

Defect. Leading Edge Type 1 Lissencephaly Defect. Reelin Pathway Type 2 Lissencephaly
(B) (C) (D) (E)

De Rouvroit & Goffinet. 2001. Mech. Dev. 105: 47-56
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Disorders of neuronal migration in humans

. Normal

. Schizencephaly

. Classic lissencephaly

. Double cortex syndrome
. Periventricular heterotopia




PVNH
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Periventricular nodular heterotopia:
Mutations in Filamin Prevent Neuronal Migration

rsk 1
c-Src?
Cdk-5?

Membrane receptor(s)
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Fox et al. 1998. Neuron



Double cortex syndrome is caused by mutations in a
protein hamed "doublecortin” that binds to microtubules

Double cortex syndrome



Subcortical Band Heterotopia -
“Double Cortex”
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Potential Roles for Lis1& Doublecortin in migrating neurons

Adhesion
molecule Receptor /

ligand Receptor
recycling

Nuclear
migration

centrosome

(__

Vesicle / organelle trafficking
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Lis-Nudel-Dynein complex regulates nuclear migration, microtubule transport, vesicle trafficking, membrane addition?

Friocort et al. 2003. Cereb. Cortex



Type II Lissencephaly Gene Products: Regulation of Basal Lamina Assembly

(b)
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Olson & Walsh. 2002. Curr. Op. Genetics & Development



Cobblestone (type II) Lissencephaly

Normal Lissencephaly




Lissencephalies

Normal Reelin

Current Opinion in Genetics & Development
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Lissencephalies

Normal Reelin

Current Opinion in Genetics & Development
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Lissencephalies

Normal Reelin

Current Opinion in Genetics & Development
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