

All types of genetics assess the flow of information in biological systems

Genotypes are amplified to produce observable phenotypes

Genotypes are amplified to produce observable phenotypes

Genotypes are amplified to produce observable phenotypes

We aim to find the causal path between a genotype and phenotype

Why consider genetics?

- DNA contains all the information necessary to build a human brain (with the right context)
- Majority of neuropsychiatric disorders are highly heritable
- DNA variation precedes disease onset

- Genetic association must be causal

Genetics provides a path to identifying etiology and treatment

Heritability

Heritability assess how much of the variance in a trait is inherited

- Twin studies:
 - Monozygotic twins vs. Dizygotic twins
 - 100% vs. 50% shared genetic factors
 - Similar degree of environmental sharing
- Family studies:
 - Sibling incidence vs. population incidence
 - 50% vs. ~0% shared genetic factors
 - Similar environmental exposure...
- SNP-based heritability:
 - Correlation of genotypes with phenotype

Heritability estimates the role that additive genetic factors play in a trait

(Risk)

Human diseases are the extremes of physiological traits

(Risk)

Heritability sets a lower threshold for the role of genetics in a disorder

Heritability estimates of common neuropsychiatric disorders

Disorder / Trait	Heritability
IQ	50%
Autism	50-90%
Schizophrenia	60-90%
Alzheimer's	60-80%
Parkinson's	40%
Multiple Sclerosis	64%
Fronto-temporal dementia	75-86%

The magnitude of effect of a genetic variant determines the inheritance pattern

The magnitude of effect of a genetic variant determines the inheritance pattern

Methods of gene discovery

Genomic variation affects varying numbers of nucleotides

The pattern of inheritance is also important in describing DNA variants

Every individual has ~ 3.5 million genetic variants; most are common

Variation in one individual

Frequency Rare Common De novo Inherited Inherited **SNV** 70 150,000 3 million 1bp Indel 250,000 5 15,000 1-1,000bp SV/CNV 150 2,000 >1,000bp

Size

Common variants have low effect size in disorders that reduce reproductive fitness

Targeted vs. Genome-wide

Genome-wide

- Look everywhere and see what sticks out
- Hypothesis generating
 Can find 'new' biology
- Data can be used for multiple studies
- Correcting for multiple comparisons limits discovery

Targeted

Look in specific places

- Hypothesis following
 Can validate findings
 - Can validate findings
- Efficient if hypothesis is correct
- Power estimate can be hard
- Fewer comparisons to correct for (?)

Genome-wide methods for finding different types of genetic variation

Frequency

	De novo	Rare Inherited	Common Inherited
SNV	Exome	Linkage	Microarray
1bp	Genome		(GWAS)
Indel	Exome	Linkage Genome	Microarray
1-1,000bp	Genome		(GWAS)
SV/CNV >1,000bp	Karyotype Microarray Genome	Lin Karyotype Microarray Genome	???

Size

Targeted methods for finding different types of genetic variation

Frequency

	De novo	Rare Inherited	Common Inherited
SNV	Candidate	Candidate	Candidate
1bp	gene PCR	gene PCR	gene PCR
Indel	Candidate	Candidate	Candidate
1-1,000bp	gene PCR	gene PCR	gene PCR
SV/CNV >1,000bp	FISH	FISH	Candidate region qPCR

Size

Publications by year using different strategies for gene discovery

Publications by year for disorders with different patterns of causation

Chromosomal Abnormalities

Karyotype analysis only finds the largest structural variants

- Karyotype analysis was the first 'genome-wide' technology
- Good for large variants causing serious disease
- Low resolution (≥3Mbp)

FISH is a high-resolution targeted approach
 – Too slow and expensive multiple regions

Karyotype analysis shows trisomy 21 and fragile X in autism families

~3% have autism

Harrison et al. J. Med. Gen., 1983

Linkage

Linkage identifies rare Mendelian disorders

- Efficient approach for finding highly penetrant rare, inherited variants
- Requires large families with multiple affected/ unaffected
- Identifies a (large) region likely to contain the causative variant
- Modern tools have made it much easier
 - Human genome project
 - SNP microarrays
 - exome sequencing

Single example of a gene found using linkage in autism

Genetic Association

We expect alleles to be present at the same rate in cases and controls

If an allele is more frequent in cases than controls it is 'associated'

Data must be cleaned to exclude false association (e.g. ancestry)

Ancestry can be determined and corrected using principal component analysis

A Q-Q plot can be used to assess the degree of population stratification

Candidate gene studies

Candidate gene methods work well if you know the underlying biology

- Assess association in genes expected to be involved in biology
- Efficient approach if biology understood
 - Outliers for circadian rhythms
- Inefficient approach if biology not understood
 - Autism
 - Schizophrenia
- Limited ability to expand understanding of etiology

Candidate gene studies were of limited benefit in schizophrenia

SNP genotyping and GWAS

Genotyping arrays detect common inherited variants

Whole-blood derived genomic DNA

r -		-	-	_	
	-	-			
Ľ					
E					
l				Ι	
			1	1	
l					
E					
в				I	

Hybridization

Measure intensity

Clustering and genotyping

GWAS are simply the association for millions of SNPs instead of just one

- Genome-wide analysis of SNP Genotypes
- Extensive data cleaning
- Association test on each remaining SNP
- Plot –log(P) value

GWAS of 36,989 cases and 113,075 controls finds 108 loci in schizophrenia

Ripke S et al. Nature Genetics., 2014

Identifying the gene contributing the GWAS risk can be complicated

1.0 1.1 1.2 1.3 Schizophrenia risk (odds ratio)

Sekar A et al. Nature., 2015

The success of GWAS varies by cohort size and disorder

Disorder	Cases	Controls	Loci	Reference
ASD	2,576	Pseudocontrols	0	Chaste et al, Biological Psychiatry 2015
ASD	2,705	Pseudocontrols	0	Anney et al, Hum Mol Genet, 2012
Schizophrenia	36,989	113,075	108	Ripke et al, Nature 2014
Depression	8,534	8,523	2	Cai et al, Nature 2015
Depression	121,380	338,101	15	Hyde et al, Nature Genetics 2016
Bipolar disorder	11,974	51,792	2	Sklar et al, Nature Genetics 2011
Multiple sclerosis	9,772	17,376	87	Sawcer et al, Nature 2011
Multiple sclerosis	29,300	50,794	103	Beecham et al, Nature Genetics 2013
Parkinson's disease	19,061	100,833	26	Nalls et al, Nature Genetics 2014
Alzheimer's disease	25,580	48,466	20	Lambert et al, Nature Genetics 2013

Interlude: Genome Browser

http://genome.ucsc.edu

Copy number variation

Genotyping arrays detect *de novo* copy number variants (CNVs)

Whole-blood derived genomic DNA

ilum	~~	
	-	
	-	
\$742716013		

Hybridization

Measure intensity

Clustering and genotyping

De novo CNVs are associated with ASD

Sanders et al. Neuron, 2015

7q11.23 duplications are associated with ASD

7q11.23 deletion -> Williams Syndrome

Hypersociable personality

7q11.23 duplication -> Social impairment

Hyposociable personality

A few CNV loci meet genome-wide significance

Disorder	Cases	Controls	Loci	Reference
ASD	4,687	De novo	8	Sanders et al, Neuron 2015
Schizophrenia	21,094	20,227	8	Marshall et al, Nature Genetics 2017
Depression	3,106	3,158	0	Rucker et al, Biol Psychiatry 2015
Bipolar disorder	2,591	8,842	1	Green et al, Mol Psychiatry 2014

No large-scale CNV analyses published in multiple sclerosis, Parkinson's, or Alzheimer's

De novo CNVs show that ASD variants can be identified

Exome sequencing

Next generation sequencing detects *de novo* single nucleotide variants (SNVs)

An increased rate of *de novo* LoF mutations in cases shows association with ASD

Adapted from Iossifov et al, Nature, 2014

The 65 ASD risk genes converge on chromatin and synaptic networks

Sanders *et al.* Neuron, 2015

Exome sequencing has identified multiple genes in early onset disorders

Disorder	Cases	Controls	Loci	Reference
Developmental Delay	4,293	De novo	94	McRae et al, BioRXiv
ASD	5,563	De novo	65	Sanders et al, Neuron 2015
Schizophrenia	617	De novo	0	Fromer et al, Nature 2014
Schizophrenia	2,536	2,543	0	Purcell et al, Nature 2014

De novo SNVs can be used to identify ASD genes with high confidence

Whole genome sequencing

Whole genome analysis has the potential to identify rare non-coding variants

- When in development
- Where in the brain
- Which cell type

Visel et al. Nature 2009

No clear non-coding signal in 519 ASD families, but more samples are coming

Systems analysis

Exome data fits 1,000 gene model of ASD causation

Having 1,000 genes may be a benefit, not a disadvantage

Having 1,000 genes may be a benefit, not a disadvantage

ASD genes are often highly pleiotropic (multiple functions). Only a subset of their functions will play a role in ASD pathology

Having 1,000 genes may be a benefit, not a disadvantage

Having 1,000 genes may be a benefit, not a disadvantage

Convergence between variants can be quantified to estimate causation

Sanders SJ, Curr Opin Genet Dev, 2015

Understanding neuropsychiatric disorders may require complex resources

Agnostic; driven by best data

Human context

Neural context

Sanders SJ, Curr Opin Genet Dev, in press

Sanders SJ, Curr Opin Genet Dev, in press

Sanders SJ, Curr Opin Genet Dev, in press

De novo SNVs can be used to identify ASD genes with high confidence

Key points

- Be skeptical about gene associations
 - Is a gene still considered "important" with genomic data
- Most genetic loci are far from 100% penetrant
- Many genetic loci are highly pleiotropic

– How can we distinguish causal relationships?

