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Experimental Preparations for In Vivo
Recording

« Anesthetized, head-fixed animals

¢ Awake, head-fixed animals

Awake, freely-moving animails




Monitoring Neural Activity with Single
Cell Resolution

Extracellular single-unit recording: microwire arrays, silicon
propes

Intracellular recording: sharp electrodes, patch-clamp

Achieving cell-type specificity with genetic/viral methods
and genetically-encoded indicators: photo-tagging, GECls,
voltage sensors



Microwire, Tetrode, and Silicon Probes
for Extracellular Multi-Unit Recording
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Origins of Extracellular Wavetorm
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Recording and Simulation D151. A: extracellular action potentials (EAPS) in the transverse section containing the soma and the tip of the electrode track (dotted line). B: enlargement of the EAP at
the estimated electrode position, and comparison to the recording (strongest channel of the tetrode). EAP is made up of 3 distinct phases: 1) a brief, positive peak; 2) a much larger negative peak;
and 3) a positive period of longer duration and slowly decaying amplitude. C: comparison of the average intracellular recording with the simulated spike in the proximal apical trunk. Lack of
pronounced afterhyperpolarization (AHP) suggests the intracellular electrode was not at the soma. D: details of the simulation in the indicated compartments. Shape of the EAP waveform is given
by the shape of the net membrane current across the membrane at the soma and proximal dendrites (2nd column). Third column: makeup of the membrane current in terms of Na*, K*, and mixed-
ion capacitive current. All 3 currents are simultaneously active throughout the action potential (AP); the 3 phases of the EAP correspond to the current that is dominant at that time: Brief positive

peak at the start of the waveform is attributed to the positive capacitive current; the main negative peak is attributed to the influx of Na* current driving the action potential; the final positive phase
results from repolarizing K* current flowing out of the cell.



Intfracellular Recording: Sharp or Patch
Electrodes

Rs = 100-200 MQ Advantages:

1. Subthreshold activity
2. Measure inhibition vs excitation
3. Can be targeted to specific cell types

Disadvantages:

/‘:r\/ 1. Low Stability (1-10 min)
Rs = 2-5 MQ 2. Leak current (sharps)
3. Requires head-fixed preparation



BUT...How Can We Record from
Specific Cell Types In Vivoe

. Cell-Type-Specific Expression of Proteins

- Transgenic driver lines (Cre, Flp, Dre) + contingent viruses
- Viruses with cell-type-specific promoters

- Transynaptic or projection targeting

. Phototagging neurons during electrophysiological recording
. GEClimaging

. Voltage imaging



Strategies for Targeting Cell Types
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Strategies for Targeting Cell Types
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Phototagging with ChR2

Roseberry et al, Cell 2016

See also:
Cardin et al 2009
Lima et al 2009
Zhao et al 2011
Cohen et al 2012
Royer et al 2012
Kravitz et al 2013



Imaging Neural Activity with GECls

GCaMP Family

R-GECO1
R-CaMP1.07
R-CaMP2
R-GECO2L
GCaMP3
GCaMP5G
GCaMP6f
GCaMP6s

Maode-lockad laser light

830 nm, 80MHz objective

A\

E J,.

v

5 L

stained volume - J

|-_J-L i£- _i'_lL -

excitation spol

-
- = | g e LR e
- calcium indicator
lcading via
"'..‘:-:'-'.-"-. |I'I-I ]
i F;
" _I'. .._.r
. ey
o o
o i .__-'
k ) £ 4

AF/F

8.7 £0.7
14.4 + 1.4
4.8 £ 0.6
4.1 0.3
8.41+0.2
18.2 £ 1.0
22.1+£3.0
30.8 + 3.0

B

223 T+ 95
192 + 4
69 + 8
26 +3
365 8
371+ 13

¥ Fewd AR




Calcium Imaging: Caveats

Calcium influx is not the same as spiking! Calcium influx can occur
without spikes, and spikes can occur without calcium influx

Different cell types will translate spikes into calcium influx
differently. Generally, calcium transients will reflect bursts and not
single spikes

Calcium indicators can saturate, particularly in neurons with high
firing rates and high densities of calcium channels

Calcium indicators bind calcium, and therefore have the
potential (at high concenitrations) to buffer intracellular calcium
signaling and alter neuronal properties



Imaging Neural Activity with GEVIs
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Voltage Imaging: Caveats

Development of GEVIs has lagged behind GEClIs because:

. Speed (need kinetics to report APs that are ~1ms in duration)

. High sensitivity (nheed to report subthreshold changes in voltage
~5mV)

. Restricted imaging volume (membrane bound)



Optical Strategies for Monitoring
Neural Activity In Vivo

1. Fiber Photometry (freely moving)

2. Microendoscopy (e.g. Inscopix cameras)
(freely moving)

3. 2-photon microscopy (head fixed)



Floer Photometry
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Microendoscopy
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2-Photon Imagin
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Lesions: Irreversible and Non-Specific

Mechanical lesions: aspiration of brain tissue (removes
everything from large areaq)

Electrolytic lesions: local heating and coagulation (targets
smaller regions)

Chemical lesions: ibotenic acid, kainic acid (spares fibers of
passage)



Toxins: Irreversible and Specific

« Diphtheria Toxin: binds human, but not murine membrane-bound
HB-EGF. Thus, express human receptor in mice using cell-type-
specific targeting strategies, administer toxin systemically (Saito
et al, 2001)
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Toxins: Irreversible and Specific

taCaspa3:

Genetic strategy to ablate Cre+ cells
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Cooling: Reversible and Non-Specific

(a) Control Dynamics
(Normal Network Activity) within HVC

Current Opinion in Neurobiology

Long and Fee, 2011
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Chemogenetics

Engineered GPCRs: Strader et al, 1991; Coward et al 1998,
DREADDs (Armbruster, Li, Herlitze, Roth, PNAS 2007) — low
constitutive activity, insensitivity to native ligand, nanomolar
binding to inert orally-active ligand (CNO).

Non-mammalian GPCRs: allatostatin receptor
(Lechner...Callaway, J Neurosci 2002; Tan et al, Neuron 2006)

Non-mammalian ion channels: c. elegans GluCl (opened by
ivermectin) (Slimko et al, J Neurosci 2002; Lerchner et al,
Neuron 2007)

Mammalian ion channels (TRPV1, GABA y2 subunif)

Engineered mammalian ion channels (PSAM, PSEM)
(Magnus...Sternson, Science 2011)



2 Modes of DREADD action: Somatic vs
Axonal Inhibition
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Early Optogenetics

Early attempts required multiple components and lacked temporal precision
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Single Component Optogenetics: ChR2

WWPW

1(1[»;)\

400 pA L
100 ms

Time (ms)

100 mV

500 ms

Boyden...Deisseroth, Nat Neurosci Sept 2005

A ChR2 Synaptobrevin

25 pm

20ms 1000 ms

‘ 20mv ’ L
\ I\ 200ms [\
‘\\x_____ \__,— [ \¥ﬁ______ __J \\_,v‘___ ‘ I\

C 5Hz-5ms 20Hz-5ms D Number of Action Potentials
: : . . . Sl S 0 4 8 T2

18

Li...Herlitze, PNAS Dec 2005



Optogenetic Inhibition: eNpHR and Arch
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Optogenetic Tool Summary

Inhibitory channel
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INn Vivo Applications
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Key Considerations in Designing
Perturtbation Experiments

What effect does the manipulation have on the
cell?

What effect does the manipulation have on the
Circuite
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Cellular Effects of Optogenetic Manipulations
Depend on Intensity and Locus

dendrites/soma: TR | axon terminal: T |
subthreshold depolarization IR | subthreshold depolarization ]

dendrites/soma: axon terminal: |
superthreshold depolarization | superthreshold depolarization 7




Cellular Effects of Optogenetic Manipulations
Depend on Intrinsic Conductances and Firing
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Cellular Effects of Optogenetic Manipulations
Depend on Pattern of llluminatior
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Paradoxical Modulation by Optogenetic
Effectors

Suppression of spiking by activators: depolarization block

Activation of spiking by eNpHR: dendrific loading of Cl -~
yields depolarizing shift in E., GABA becomes depolarizing

Activation of spiking by Arch: change in extracellular pH
activates ASIC channels

Increased spontfaneous neurofransmitter release by Arch



Key Considerations in Designing
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What effect does the manipulation have on the
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Activity Manipulation: Effects of Local
Microcircuitry

Cell Type A

Scenario 1: Cell type A
and B are glutamatergic.

AN

i ChR2 in cell type A
}D Behavior could be driven
Cell Type B by either cell type A or B

For a more complex analysis of optogenetic effects on circuit computation, see Phillips and Hasenstaub 2016



Activity Manipulation: Network Effects
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AcTtivity Manipulation: Network Effects
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AcTtivity Manipulation: Network Effects
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