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NOTES	ON	THE	BINOMIAL	AND	POISSON	DISTRIBUTIONS	

The	binomial	distribution	deals	with	events	where	each	trial	yields	only	one	of	two	possible	outcomes,	such	
as	"heads"	and	"tails".		If		
	 p=probability	of	a	"success"	on	each	trial,	and	
	 q=probability	of	a	"failure"	on	each	trial	(p+q=1),	then	
the	probability	of	getting	k	successes	in	n	trials	is	given	by	
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(Note	that	there	are	both	capital	P's	and	lower	case	p's.		You	will	have	to	keep	them	straight!)	

The	average	number	of	successes	in	a	large	number	of	trials	is	"m",	where	

	 m	=	np.	 (2)	

Note	that	in	this	simple	case	(the	simple	binomial),	we	assume	that	p	is	constant	for	each	trial.		It	is	assumed,	
furthermore,	that	the	outcome	of	any	one	trial	is	independent	of	the	outcome	of	any	other.	

It	is	useful	to	be	able	to	predict	P(k;n,p)	in	order	to	compare	the	expected	outcome	of	an	experiment	with	
the	actual	outcome.		To	determine	P,	it	is	necessary	to	know	n	and	p	(see	equation	1).		But	n	and	p	cannot	be	
known	without	knowing	the	extent	to	which	the	measured	number	of	successes	varies	over	a	number	of	sets	
of	trials.		A	single	set	of	trials	can	be	run	by	having	a	number	of	coins	flipped	at	once.		Let's	say	that	15	
students	each	flipped	a	coin	once,		and	9	of	them	got	heads.		That	represents	one	set	of	trials,	with	an	n	of	
15.		By	repeating	this	process	N	times,	we	have	created	N	sets	of	n	trials.		For	the	binomial	distribution,	the	
variance	(s2)	about	the	mean	for	N	sets	of	n	trials,	is	given	by	

 s2	=	npq	=	np	(1-p)	=	m	(1-p).	 (3)	

Solving	for	p	yields	 p	=	èç
æ

ø÷
ö1	-	

s2	
m .	 (4)	

We	now	have	p	in	terms	of	two	measurable	variables,	m	and	s2	.		Remember	that	m	is	simply	the	mean	
number	of	"successes"	per	set	of	n	trials	and	s2	is	the	variance	about	this	mean	for	N	sets	of	trials.		Once	p	is	
known,	n	can	be	determined	(from	equation	2).	

A	similar	approach	utilizes	the	coefficient	of	variation	(CV=
s
m),	which	is	given	as	

	 CV	=	
1
m	-	

1
n.	 (5)	

Solving	for	n	yields	

	 n	=	
m

1	-	
s2	
m

,	 (6)	

which	is	simply	a	rearrangement	of	equations	(5)	and	(3).		Once	n	is	known,	p	is	calculated.		The	use	of	
equations	(4)	and	(6)	represent	two	different	but	non-independent	means	of	measuring	p	and	n.	

The	process	of	transmitter	release	may	be	analogous	to	that	of	flipping	coins.		Each	time	an	action	potential	
invades	a	nerve	terminal,	an	integral	number	of	transmitter	quanta	are	released.		The	actual	number	
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released	fluctuates	from	trial	to	trial	in	a	stochastic	manner.		The	variable	"n"	represents	the	"number	of	
quanta	available	for	release"	or	the	number	of	"release	sites",	while	"p"	represents	the	probability	that	any	
one	of	those	quanta	will	be	released	(or	the	probability	that	release	will	occur	from	one	of	those	sites).		The	
variable	"m"	represents	the	average	quantal	content,	the	number	of	quanta	released	per	stimulus,	as	
determined	over	a	large	number	of	trials	(stimuli).		The	variable	s2	represents	the	variance	about	the	mean,	
m,	in	the	sampled	population	of	quanta	released	over	the	N	trials.		Note	now	that	the	number	of	sets	of	
trials,	N,	is	equated	with	the	number	of	stimuli.		Each	trial	represents	the	sampling	of	a	number	of	"quanta	
available	for	release".		The	total	number	of	sampled	events	in	the	experiment	is	actually	nN,	but	we	have	
divided	them	into	N	sets,	determining	an	outcome	for	each,	in	order	to	measure	s2.	

Only	in	rare	instances	is	it	possible	to	determine	m	and	s2	directly	when	studying	synaptic	transmission.		It	
simply	isn't	possible	to	count	quanta	under	ordinary	conditions.		Instead,	one	measures	a	postsynaptic	
response,	which	is	more-or-less	continually	graded.		There	is	a	finite	amount	of	noise	in	the	system,	and	the	
unit	potentials,	which	sum	to	produce	the	overall	response,	have	a	variance	of	their	own.		Thus,	if	the	unit	
potential	has	a	mean	size	of	0.5	mV	(if	we	are	measureing	a	potential	change)	and	a	coefficient	of	variation	
(standard	deviation	divided	by	mean)	of	0.25,	then	one	cannot	know	whether	a	2.5	mV	response	is	an	
average	"5",	a	large	"4"	or	a	small	"6".		It	is	still	possible	to	estimate	m	from	a	number	N	of	trials	by	dividing	
the	mean	response	of	the	epsp	(or	epsc)	by	the	mean	unit	response	(usually	equated	with	the	spontaneously	
occurring	signals).		If	the	responses	are	measured	as	voltage	deflections,	then	one	may	have	to	correct	for	
non-linear	summation	before	analyzing	the	data	further	(what	is	“non-linear	summation?”).		p	(lower	case!)	
can	then	be	calculated	using	an	expression	similar	to	equation	(5),	but	having	terms	for	the	variance	of	the	
evoked	response	as	well	for	the	spontaneous	response.		Thus		

	 p	=	1	-	
S2

mg2	+	
s2

g2,	 (7)	

where	S2	=	variance	of	the	evoked	response,	g	=	mean	size	of	the	spontaneous	response,	s2	=	variance	of	the	
spontaneous	responses,	and	m	=	average	quantal	content	(the	mean	size	of	the	evoked	response	divided	by	
the	mean	size	of	the	spontaneous	response).	

In	order	to	determine	whether	release	obeys	binomial	statistics,	one	must	calculate	both	p	and	n.		One	can	
then	generate	an	expected	distribution	of	responses	for	N	trials	(from	equation	1)	and	can	determine	
whether	the	actual	distribution	of	responses	is	adequately	fit	by	the	expected	distribution	(using	the	c2	test,	
for	example).		This	can	be	done	directly	if	individual	quanta	can	be	counted	or	indirectly	if	only	the	size	of	
response	is	measured.		If	individual	quanta	cannot	be	counted,	then	an	expected	distribution	of	responses	
must	be	generated	(see	Boyd	and	Martin,	1956).		If	the	fit	is	good,	then	we	can	say	that	release	obeys	
binomial	statistics.		Unfortunately,	this	does	not	mean	that	the	assumptions	made	in	setting	up	equation	(1)	
are	correct.		It	turns	out	from	Monte	Carlo	simulations	that	a	good	fit	is	often	obtained	even	when	p	is	not	
the	same	for	all	"available	quanta",	a	condition	known	as	non-uniformity	or	when	the	values	of	"p"	change	
over	time	("non-stationarity").		If	release	is	non-uniform,	then	usually	p	will	be	overestimated	and	n	will	be	
underestimated.		This	is	because	estimates	will	preferentially	reflect	the	more	"active	"	sites	and	will	raise	the	
estimate	for	p	(and	lower	it	for	n).		If	release	is	non-stationary,	then	usually	p	will	be	underestimated	and	n	
will	be	overestimated.		This	is	because	a	temporal	variation	results	in	an	increase	in	the	overall	variance,	
which	will	increase	estimates	of	n	(see	equation	6).	

One	of	the	difficulties	of	applying	the	binomial	distribution	is	that	both	n	and	p	must	be	determined	before	
an	expected	distribution	of	events	can	be	generated.		As	we	have	seen,	it	isn't	always	easy	to	do	this	and	
know	that	the	estimates	are	accurate.		However,	the	equation	defining	the	binomial	distribution	(1)	is	greatly	
simplified	if	n	>>	k	(the	number	of	successes),	which	will	be	true	if	p	<<	1.		Equation	1,	in	expanded	form,	is	

	 p(k;n,p)	=	èç
æ

ø÷
ön(n-1)(n-2)···(n-k+1)(n-k)(n-k-1)···(1)

k!	(n-k)! pk	q(n-k)	 (8)	

The	terms	in	the	numerator,	up	to	(n-k+1),	are	@ nk	(since	n>>k),	and	the	terms	in	the	remainder	of	the	
numerator	are	=	(n-k)!		Therefore,	if	p	«	1,	
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	 P	(k;n,p)	=	
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Rearranging	and	substituting	yields	

	 P	(k;n,p)	=	
mk

k! 	èç
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.	 (10)	

Furthermore,	 lim
$→&

1 − )
$

$
	=	e-m			(a	Taylor	series).	 (11)	

Therefore,	 p	(k;n,p)	=	
mk

k! 	e
-m.	 (12)	

Equation	12	is	the	Poisson	equation.		In	order	to	determine	whether	a	distribution	of	responses	is	well	fitted	
by	the	Poisson	law,	one	need	only	determine	m,	the	mean	quantal	content,	and	use	m	to	determine	P(0),	
P(1),	etc.		For	example,	the	probability	that	a	stimulus	will	lead	to	zero	successes	(k=0)	is		

	 P(0)	=	
m0

0! 	e
-m	=		e-m	 (13)	

The	best	method	of	measuring	m	is	to	count	the	quanta.		If	this	is	not	possible,	then	one	must	divide	the	
mean	response	by	the	unit	response.		This	is	the	so-called	"direct"	method	of	determing	m,	although	you	can	
appreciate	that	it	is	far	from	direct.		This	single,	experimentally	determined	number	can	then	be	used	to	
generate	the	entire	distribution	of	expected	responses.		If	the	Poisson	distribution	holds	in	a	particular	
experimental	situation	(i.e.,	if	p	<<1),	then	one	can	calculate	the	mean	in	one	of	two	ways,	the	"failures	
method"	and	the	"coefficient	of	variation"	method.		The	failures	method	uses	equation	13,	which,	yields	

	 -	m	=	ln	P(0).	

But	since	P(0)	=	
No
N ,	by	rearrangement		

	 	m	=	ln	
N
No	 (14)	

where	N	is	the	number	of	trials	(remember,	this	is	the	number	of	stimuli	and	should	not	be	confused	with	n,	
the	number	of	"available	quanta"	or	"sites"),	and	No	the	number	of	trials	resulting	in	no	released	quanta	(i.e.,	
the	number	of	"failures").	

The	second	method	of	estimating	m	is	the	coefficient	of	variation	method.		In	the	binomial	case	

 s2	=	m	(1-p),	from	equation	(4).		But	since,	in	the	Poisson,	p	«	1	

	 m	=	s2	 (15a)	

This	is	often	expressed	as		 m	=	
1

(CV)2	 (15b)	

where	CV	=	s/m.		Once	m	is	estimated	either	by	the	method	of	failures	or	the	coefficient	of	variation	method,	
it	can	then	be	compared	to	the	"directly"	estimated	value	of	m.		A	more	complete	analysis	would	be	to	use	
the	"direct"	estimate	of	m	to	calculate	the	entire	distribution	of	expected	responses,	including	the	number	of	
failures.,	using	equation	(12),	and	then	to	compare	that	distribution	with	the	actual	one.	


