Transporters

different from channels: speed saturation concentration --not exactly

alternating access

movement of unloaded carrier crucial for net transport

exchange

membranes preloaded with ¹⁴C-glucose diluted into medium with unlabelled glucose

heteroexchange obligate exchangers cannot do net flux amphetamines may release monoamines this way (exchange-diffusion)

different classes

P-type ATPase: Na⁺/K⁺-ATPase

P-type involve phosphorylated intermediate how can phosphorylation outside membrane trigger movement of ions across membrane?

ionic coupling

AND gate, ~coincidence detector

equilibrium

$$S_o + Na_o^+ \leftrightarrow S_i + Na_i^+$$

stoichiometry of 1 Na⁺ : 1 S and ~12-fold Na⁺ gradient will generate ? gradient of S

at equilibrium, equal rates in and out of cell

 $[Na^{+}]_{o} \times [S]_{o} = [Na^{+}]_{i} \times [S]_{i}$

 $[Na^{+}]_{o} / [Na^{+}]_{i} = [S]_{i} / [S]_{o}$

what if it is an exchanger?

if coupling involves 2 Na⁺ : 1 S, then

 $[Na^{+}]_{o}^{2} \times [S]_{o} = [Na^{+}]_{i}^{2} \times [S]_{i}$ $([Na^{+}]_{o} / [Na^{+}]_{i})^{2} = [S]_{i} / [S]_{o} \text{ or}$ $\log_{10} (S_{in}/S_{out}) = 2 \log_{10} (Na^{+}_{out}/Na^{+}_{in})$

why not just make the stoichiometry very high?

what if net flux involves charge movement?

electrogenic transport (transport that moves net charge)

where $n = # Na^+$ ions cotransported

--power of membrane potential

equation changes for different ionic coupling

ionic coupling determines direction of flux magnitude of gradient (can exceed 10⁶:1) regulation by membrane potential

reuptake: Na/CI-dependent transport

DAT KO:

impaired **rate** of dopamine *clearance* in striatum also, KO has 95% decrease in dopamine stores! --crucial role in *recycling*

glycine transport

electrogenic transport produces currents: **rate** --depend on Na⁺, Cl⁻

defined by gly addition --strictly rectifying

can measure charge:flux using labeled glycine, Cl suggests fixed stoichiometry (Roux and Supplisson, 2000) for electrogenic glycine transport, $\log_{10} (gly_{in}/gly_{out}) = m \log_{10} (Na^+_{out}/Na^+_{in}) + n \log_{10} (Cl^-_{out}/Cl^-_{in}) - z_T \Delta \Psi / 60 \text{ mV}$

$$z_{T}\Delta\Psi / 60 \text{ mV} = \log_{10} \frac{\text{Na}_{o}^{+}\text{m} \times \text{CI}_{o}^{-}\text{n} \times \text{gly}_{o}}{\text{Na}_{i}^{+}\text{m} \times \text{CI}_{i}^{-}\text{n} \times \text{gly}_{i}}$$

$$\Delta \Psi = \underbrace{60 \text{ mV}}_{Z_{T}} \underbrace{\log_{10} \frac{\text{Na}_{o}^{+}\text{m} \text{ x Cl}_{o}^{-}\text{n} \text{ x gly}_{o}}{\text{Na}_{i}^{+}\text{m} \text{ x Cl}_{i}^{-}\text{n} \text{ x gly}_{i}} = E_{rev}$$

--like Nernst equation:

$$E_{Na} = 60 \text{ mV} \log_{10} \text{Na}_{o}^{+}/\text{Na}_{i}^{+}$$

what are the differences?

$$\begin{array}{c} \text{Erev} = \underline{60 \text{ mV}} \\ (m_{Na} - n_{Cl}) \end{array} \begin{array}{c} \text{log} \quad \underline{\text{Na}_{o}^{+} \text{m} \text{ x } \text{Cl}_{o}^{-} \text{ x } \text{gly}_{o}} \\ \overline{\text{Na}_{i}^{+} \text{m} \text{ x } \text{Cl}_{i}^{-} \text{ x } \text{gly}_{i}} \end{array}$$

can use Erev at different ionic gradients to determine n, p BUT S-induced currents rectify--need them to reverse

assume n = 1

GlyT1 (2 Na⁺) allows higher gly_o than GlyT2 (3 Na⁺)

--to activate NMDA-type glutamate receptors? GlyT1 KO: excess glycine (excess inhibition)--main role clearance GlyT2 KO: resembles GlyR KO (startle)--main role packaging differences in ionic coupling can also confer transfer between cells

can these transporters release neurotransmitter? how?

excitatory amino acid transporters (EAATs)

little effect on kinetics of EPSC (buffer—translocation too slow) controls activation of perisynaptic receptors, spillover *longer-term* effects (seizures, degeneration): equilibrium

3 Na⁺:1 H⁺:1 glu⁻←→ 1 K⁺

glutamate-induced currents can reverse (--glutamate-gated chloride channel (receptor) WHY?

(Wadiche et al, 1995)

some transporters also behave like channels EAATs can behave as glu-gated chloride channels

transport cycle can gate an ion channel ?evolutionary intermediate

vesicular neurotransmitter transporters

neurotransmitter per vesicle at **equilibrium** determines location, affinity of receptors activated depends on H⁺ electrochemical gradient: H⁺ ideal different NT depend on different components (Δ pH and $\Delta \psi$)

$$\Delta \mu_{H+} = \Delta p H + \Delta \psi$$

Cl⁻ entry dissipates $\Delta \psi$ cation efflux another way how to create $\Delta \psi$?

VMAT protects against MPP⁺ toxicity ?role in Parkinson's? Km ~1 µM (high apparent affinity)

vesicular glutamate transport

originally identified as Na/Pi cotransporter depends primarily on $\Delta \psi$ low apparent affinity (Km 1-3 mM) allosteric activation by chloride (2-10 mM) defines glutamate neurons

glutamate corelease with dopamine

dopamine neurons form glutamatergic autapses in vitro express high levels of VGLUT2 in vitro VTA dopamine neurons express VGLUT2 in vivo especially early in life DAT-cre:VGLUT2--

dopamine stores reduced ~35% selective for ventral striatum --consistent with localization of VGLUT2 to VTA

acidification: acridine orange

--glutamate also acidifies synaptic vesicles corelease with other neurotransmitters widespread

glutamate and Cl⁻ have additive effects on ΔpH vesicles acidified with glu retain ΔpH longer accounts for dopamine storage promoted by glu

optogenetics: cChR2 in DAT-cre mice

glutamate released by dopamine neurons also acts as an independent signal ?same or different synaptic vesicles?

 H_2O

low pH_o activates an inwardly rectifying Cl⁻ current

glutamate and Cl⁻ permeate through similar pathway both driven by $\Delta \psi$: seems counterproductive both allosterically activated by lumenal Cl⁻ and H⁺: role of allosteric activation?

VGLUT function

H⁺ pump-dependent activation
Cl⁻, glu dissipate Δψ, increase ΔpH
--make it impossible to disentangle
roles of driving force and allosteric activation
predict huge effects on equilibrium and rate of SV filling
voltage clamp would solve this problem
--but how to record from a vesicle transporter?

- 1) misexpress transporter at plasma membrane
- 2) record directly from endosomes
- --chloride and glutamate conductances
- --allosteric activation by H⁺ as well as Cl⁻ (both sides)

References

Bellocchio, E.E., Reimer, R.J., Fremeau, R.T.J., and Edwards, R.H. (2000). Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289, 957-960.

Chaudhry, F.A., Reimer, R.J., and Edwards, R.H. (2002). The glutamine commute: take the N line and transfer to the A. J Cell Biol 157, 349-355.

Dallos, P., and Fakler, B. (2002). Prestin, a new type of motor protein. Nat Rev Mol Cell Biol 3, 104-111.

Edwards, R.H. (2007). The neurotransmitter cycle and quantal size. Neuron 55, 835-858.

Eriksen, J., *et al.* 2016. Protons regulate vesicular glutamate transporters through an allosteric mechanism. Neuron 90, 768-780.

Fremeau, R.T., Jr., Troyer, M.D., Pahner, I., Nygaard, G.O., Tran, C.H., Reimer, R.J., Bellocchio, E.E., Fortin, D., Storm-Mathisen, J., and Edwards, R.H. (2001). The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31, 247-260.

Goh, G.Y., Huang, H., Ullman, J., Borre, L., Hnasko, T.S., Trussell, L.O., and Edwards, R.H. (2011). Presynaptic regulation of quantal size: K(+)/H(+) exchange stimulates vesicular glutamate transport. Nat Neurosci. 14, 1285-92.

Gomeza, J., Hulsmann, S., Ohno, K., Eulenburg, V., Szoke, K., Richter, D., and Betz, H. (2003). Inactivation of the glycine transporter 1 gene discloses vital role of glial glycine uptake in glycinergic inhibition. Neuron 40, 785-796.

Gomeza, J., Ohno, K., Hulsmann, S., Armsen, W., Eulenburg, V., Richter, D.W., Laube, B., and Betz, H. (2003). Deletion of the mouse glycine transporter 2 results in a hyperekplexia phenotype and postnatal lethality. Neuron 40, 797-806.

Guan, L., and Kaback, H.R. (2006). Lessons from lactose permease. Annu Rev Biophys Biomol Struct 35, 67-91. Hnasko, T.S., N. Chuhma, H. Zhang, G.Y. Goh, D. Sulzer, R.D. Palmiter, S. Rayport, and R.H. Edwards. 2010. Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron. 65:643-656. Hua, Z. et al. v-SNARE composition distinguishes synaptic vesicle pools. 2011. Neuron 71, 474-487.

Olesen, C., Picard, M., Winther, A.M., Gyrup, C., Morth, J.P., Oxvig, C., Moller, J.V., and Nissen, P. (2007). The structural basis of calcium transport by the calcium pump. Nature 450, 1036-1042.

Roux, M.J., and Supplisson, S. (2000). Neuronal and glial glycine transporters have different stoichiometries. Neuron 25, 373-383.

Shi, L., Quick, M., Zhao, Y., Weinstein, H., Javitch, J.A. (2008). The mechanism of a neurotransmitter:sodium symporter--inward release of Na+ and substrate is triggered by substrate in a second binding site. Mol Cell 30, 667-677. Voglmaier, S., Kam, K., Yang, H. Fortin, D.L., Hua, Z., Nicoll, R.A., Edwards, R.H. 2006. Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron 51, 71-84.

Wadiche, J.I., Amara, S.G., and Kavanaugh, M.P. (1995). Ion fluxes associated with excitatory amino acid transport. Neuron 15, 721-728.

Weston, M.C., Nehring, R.B., Wojcik, S.M., and Rosenmund, C. (2011). Interplay between VGLUT isoforms and endophilin A1 regulates neurotransmitter release and short-term plasticity. Neuron 69, 1147-1159.

Wu, Y., Wang, W., Diez-Sampedro, A., and Richerson, G.B. (2007). Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1. Neuron 56, 851-865.

Yamashita, A., Singh, S.K., Kawate, T., Jin, Y., Gouaux, E. (2005.) Crystal structure of a bacterial homologue of Na(+)/Cl(-)-dependent neurotransmitter transporters. Nature 437, 215-223.

Yernool, D., Boudker, O., Jin, Y., Gouaux, E. (2004). Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431, 811-818.

Zomot E, Bendahan A, Quick M, Zhao Y, Javitch JA, Kanner BI (2007) Mechanism of chloride interaction with neurotransmitter:sodium symporters. Nature 449:726-730.