Neuronal Integration:

- Cable theory
- Passive integration in dendrites
- Orthodromic and antidromic (bAP) spike propagation
- "Active" properties of dendrites
 - Intrinsic & synaptic mechanisms
- Axonal integration
 - Analog vs. Digital components of AP-evoked release
 - Determinants of AP initiation

Passive spread of voltage along a leaky cable

Note: we're currently ignoring membrane capacitance

Let's stop ignoring capacitance:

EPSPs are spatiotemporally filtered

Real life example: cerebellar stellate interneurons

If they uncage, they see the same PPR differences

Abrahamsson et al., 2012 PMID: 22445343

Neuronal "exploitations" of passive cable properties Exploit #1: encoding broadband auditory chirps

Octopus cells need to be extremely fast integrators. Therefore, *very low* time constant. Mechanism?

Octopus cells need to be extremely fast integrators. Therefore, *very low* time constant. Mechanism?

There is a synaptic component to coincidence detection, too *Synaptic currents are unusually brief in auditory brainstem*

In part due to channel properties (AMPA subunit GluR4_{flop} desensitize quickly) What other mechanisms could speed PSPs in auditory brainstem? Exploit #2: Interaural timing difference coding (nucleus laminaris in birds, medial superior olive in mammals)

ITD: Interaural timing difference IID: Interaural intensity difference

Knudsen 2002

Auditory coincidence detection is done by convergence of binaural signals onto bipolar neurons

ITD detection in chick nucleus laminaris (NL)

Interaural time difference (ITD)

Axonal conduction delay

Jeffress model for ITD coincidence detection (1948)

Properties of bipolar coincidence detector cells

B MSO principal cell

Accurate coincidence detection in post-hatch chick (40°C)

Kuba et al., 2003

It's not just dendrites. Position of spike initiation zone in axon also contributes to proper ITD processing.

Exploit #3? Sublinear integration of neighboring inputs in cerebellar stellates.

Neurons discussed to this point have lacked spines Why have spines?

How electrically compartmentalized are spines?

Harnett et al., 2012 In TTX and D-AP5, all Ca influx through VGCCs

How electrically compartmentalized are spines?

VDS have improved... why not just image the voltage in the spine? Popovic et al., 2025

How electrically compartmentalized are spines? wow... light microscopes have improved...

Tønnesen et al., 2014

How electrically compartmentalized are spines? wow... light microscopes have improved...

Passive properties make voltage clamp difficult in dendritic cells Active properties make voltage clamp a nightmare

a Current clamp Voltage clamp Dendrite (10 µm) 2 mV $V_{\rm escape}$ Vsite I_{dclamp} dclamp Slow dEPSC 100 pA Fast dEPSC V_{soma} /vclamp 10 ms

Voltage clamp is really good for local currents

Williams & Wozny 2008

Practical consideration for interpreting somatic voltage-clamp data

Williams & Wozny 2008

AP propagation down axon is *generally* reliable

Khaliq and Raman, 2005

Dendritic backpropagation is quite variable

Vetter, Roth, Hausser, 2005

Now on to active properties:

Recruitment/inactivation of channels and receptors

NDMAR: Jahr and Stevens, 1990

Ca²⁺ channel types respond differentially to depolarization

Antagonist:

Dendritic spike trigger zones in cortical pyramidal cells

Larkum Sakmann, 1999

Active properties of dendritic branches

IN

OUT

8

12

н

С

Branco Hausser 2010

Why is "in" better than "out"?

Branco Hausser 2010

Mechanism here: boosting by NMDAR activation

what other mechanisms could support dendritic supralinearities?

Integration in axons—

Postsynaptic EPSP amp can increase if presynaptic soma is depolarized. Why?

Potential mechanism #1: subthreshold depolarizations propagate down axon (aka, analog axonal signaling)

Shu, Hasenstaub, McCormick 2006

What's that depolarization doing in the axon? 1st IPSP amplitude increases, PPR decreases.

Christie Jahr 2011

Depolarizations activate VGCCs in boutons?

What about cells with much longer axons?

Christie Jahr 2011

Modulatory mechanisms that alter integration

Too many to list, really. But some are:

- -modulation of membrane resistivity near V_{rest}
 - HCN channels
 - K channels
- -modulation of channels that contribute to dendritic nonlinearities
 - Ca channels
 - K channels
 - NMDA receptors
- -modulation of spike initiation
 - K channel inactivation in AIS
 - Na channel inactivation
 - "supporting" channels in AIS: KCNQ, VGCCs
 - Position and length of AIS relative to soma

Spike initiation zone has 2 Na_v isoforms - Na_v1.2 proximal, 1.6 distal

Hu Shu 2009

 Na_v activation kinetics differ by location —What does this mean for spike initiation?

Hu Shu 2009

Hu Shu 2009

Integration is controlled by compartment-specific inhibition

Integration is controlled by compartmentspecific inhibition

