Synaptic Vesicle Cycle

quantal release has many advantages but imposes several requirements

high potential for regulation huge variation in release probability multiple modes of release process information

vesicular transport: a general mechanism

transport vesicles form at compartment A fuse with compartment B what are alternative possibilities?

usually constitutive vesicles do not accumulate cannot isolate key intermediate --unless process regulated

SV Purification

synaptic vesicles the smallest biological membranes homogeneous in size, shape --separate by density (equilibrium sedimentation) and size (velocity sedimentation, size exexclusion chromatography)

proteins excised from gel, sequenced:

mechanisms of membrane association

single TMD (type 2 synaptobrevin, 1 synaptotagmin) polytopic (synaptophysin, SV2) peripheral membrane proteins (synapsin, synuclein) lipid-anchored (rab3, cysteine string protein)

proteomics has quantified components

the function of most remain unknown

trafficking assay (Rothman) for vesicular transport within Golgi complex

assay for glycosylation of VSV-G protein requires transport between stacks of different cells

activity requires many proteins identified by functional complementation inactivate extract with NEM (-SH reagent) rescue with untreated extract purify rescuing component: --NEM-sensitive factor (NSF)

NSF is an ATPase--used to find associated proteins:

NSF affinity chroma fography

binding in non-hydrolyzable ATP elute with ATP--releases only those bound dependent on ATP --soluble NSF attachment receptors (SNAREs)

specifically cleave SNAREs --less effect on spontaneous than evoked release

revised model

zippering mechanism provides energy N-termini of v- and t-SNAREs interact first energy for fusion provided by binding SNARE complex very stable --dissociates only by boiling in SDS

OR addition of ATP to NSF to dissociate SNAREs before endocytosis, leaving t-SNAREs on plasma membrane

SNARE distribution

suggests specificity:

BUT SNARE complex formation is promiscuous AND only some complexes produce fusion ?role for transmembrane domains? what regulates SNARE complex formation?

docking and priming: SM proteins

regulation at t-SNARE itself: syntaxin has an **auto-inhibitory** domain --must be removed to form SNARE complex

(Sudhof and Rothman, 2009)

SM proteins essential for fusion in cells (not in vitro) munc18 (n-sec1) stabilizes closed state of syntaxin --site of regulation: open point mutant but loss blocks fusion--catalytic

munc18 also binds to assembled SNARE complex --positive regulator as well as negative

another SNARE regulator: unc-13

wild type

بالبلا يبيانه بالباني بالبالي أسبيا يع

unc-13

open-Syntaxin

And the state of the second second

unc-13; open-Syntaxin

(McEwen et al, 2006)

open syntaxin lacking autoinhibitory domain rescues unc13 null --role in priming?

(Rosenmund et al, 2002)

double KO = no release rescue with different isoforms alone confers different forms of short-term plasticity (due to changes in Pr)

what confers specificity to SNARE assembly? not SNAREs

only a few SM proteins (operate at multiple sites)

?rabs

Ca++-dependent triggering

type I SV protein (N-term lumenal)

C2s mediate Ca⁺⁺-dependent phospholipid binding could mediate Ca⁺⁺-evoked release interact with SNARE proteins

dimer contains 4 C2 domains: does this confer the sensitivity to [Ca⁺⁺]⁴? --delete one of the two C2 domains: Drosophila loss of syt eliminates evoked release increases spontaneous release delete one C2 domain:

⁽Littleton and Bellen, 1994)

Hill coefficient reduced from ~4 to ~2 WT interpreted as dimer (4 C2 domains)

syt 1 KO (mouse)

KO reduces synchronous release no effect on asynchronous

increased spontaneous release still Ca⁺⁺-sensitive unmasking a distinct Ca⁺⁺ sensor higher affinity

multiple synaptotagmins

differ in Ca⁺⁺ affinity Syt7 on LDCVs and lysosomes *required for facilitation: how?* contributes to regulated secretion function of others unknown

complexin binds to SNARE complex

(Pabst et al, 2000)

--not to individual SNAREs

over-expression **inhibits** release complexin KO ~synaptotagmin KO

experimental issue with studying NT release presynaptic manipulation problematic in slices cannot make KI mice for each mutation --mass cultures vs. autapses

loss of complexins reduces evoked release increases spontaneous release central helix binds to SNARE complex orientation opposite to SNARE proteins accessory helix clamps, blocking fusion N-terminus activates fusion model: synaptotagmin displaces to trigger fusion?

number of SNAREs

one for fusion in chromaffin cells one for hemifusion, 3 for full fusion: reconstituted nanodiscs (# v-SNAREs)

complexin accessory helix clamps adjacent SNARE complex

active zone

sites of preferred exocytosis t-SNAREs axonal (not just active zone) specified by munc-13, RIM, RIM-binding protein (RBP), α-liprin cytomatrix proteins: bassoon, piccolo, ELKS/CAST calcium channels

role for active zone proteins in priming

RIM mutant: reduced release evoked and spontaneous normal docking rescued by open syntaxin rescued by dimerization-deficient munc13

RIM-binding protein

(Liu et al., 2011)

loss of RBP disrupts Brp (ELKS)

RBP mutant recovers with stimulus train

coupling to calcium entry

direct visualization of NT release

biochemical reconstitution

dissects steps (difficult with other approaches) amenable to manipulation of components

FM dyes

fluoresce only in membrane loaded by stimulation wash to remove free dye stimulate to unload dye

pHluorin reporters

quenched at low pH of SVs unquenched by exocytosis membrane proteins quenched again after endocytosis due to reacidification soluble proteins released (slowly)

amperometry

direct measurement of monoamines can detect single SV fusion

capacitance

detects cumulative fusion except in cell-attached patch mode

total internal reflection fluorescence microscopy

detects individual exocytic events brightens on entering TIRF plane

false fluorescent neurotransmitters

loaded by vesicular transporters (many molecules) monitor fast phase of release can detect pH-insensitive FFNs before fusion

VGLUT1-pHluorin

--difficult to detect individual SVs

these methods cannot detect kinetics of single events physiological mechanism unknown

capacitance flicker

kiss-and-run: reversible opening of fusion pore

fusion pore dilation regulates which peptides released --characteristic order of release less affect on classical transmitters

how is the fusion pore regulated? does this affect release from SVs?

peptidergic vesicles (large dense core vesicles)

different calcium requirements LDCVs require more stimulation BUT have higher intrinsic Ca⁺⁺ sensitivity --further from Ca⁺⁺ entry sites

what about the membranes?

PC12 permeabilized cell assay (Martin)

ATP-dependent priming Ca⁺⁺-dependent triggering

sequential lipid modification

- PI phosphorylation (3 proteins required): PI transfer protein PI4K PIP5K
- 2) CAPS (Ca++-activated protein for secretion)

not unique to LDCVs: CAPS ~munc 13 promotes SNARE assembly

cannot detect individual events (amperometry) why do VAMP1 and 2 KOs differ?

hemifusion precedes fusion PH-GFP labels plasma membrane Alexa dye in medium --enters with full fusion

500 nm (Zhao et al., 2016)

delay means hemifusion can be stable

VMAT2 substrate load 1 h before imaging FFN206 is pH-insensitive (detect before fusion) many molecules per vesicle works in adrenal chromaffin cells ?neurons?

--3 event types what is responsible? are there multiple pathways to exocytosis?

Reading: The Synapse, edited by Sheng, Sabatini and Sudhof, pp. 49-78

References

Borisovska M, Zhao Y, Tsytsyura Y, Glyvuk N, Takamori S, Matti U, Rettig J, Sudhof T, Bruns D (2005) v-SNAREs control exocytosis of vesicles from priming to fusion. EMBO J 24:2114-2126.

Chen, X., Tomchick, D.R., Kovrigin, E., Arac, D., Machius, M., Sudhof, T.C., and Rizo, J. (2002). Three-dimensional structure of the complexin/SNARE complex. Neuron 33, 397-409.

Eggermann, E., Bucurenciu, I., Goswami, S.P., and Jonas, P. (2012). Nanodomain coupling between Ca(2)(+) channels and sensors of exocytosis at fast mammalian synapses. Nature reviews. Neuroscience *13*, 7-21.

Geppert, M., Goda, Y., Hammer, R.E., Li, C., Rosahl, T.W., Stevens, C.F., and Sudhof, T.C. (1994). Synaptotagmin I: a major Ca++ sensor for transmitter release at a central synapse. Cell 79, 717-727.

Giraudo, C.G., Eng, W.S., Melia, T.J. and Rothman, J.E. 2006. A clamping mechanism Involved in SNARE-dependent exocytosis. Science 313: 676-80.

Giraudo CG, Garcia-Diaz A, Eng WS, Chen Y, Hendrickson WA, Melia TJ, Rothman JE (2009) Alternative zippering as an on-off switch for SNARE-mediated fusion. Science 323:512-516.

Graf, E.R., R.W. Daniels, R.W. Burgess, T.L. Schwarz, and A. DiAntonio. 2009. Rab3 dynamically controls protein composition at active zones. Neuron. 64:663-77.

Jackman, S.L., Turecek, J., Belinsky, J.E. & Regehr, W.G. The calcium sensor synaptotagmin 7 is required for synaptic facilitation. *Nature* **529**, 88-91 (2016).

Krishnakumar, S.S., Radoff, D.T., Kummel, D., Giraudo, C.G., Li, F., Khandan, L., Baguley, S.W., Coleman, J., Reinisch, K.M., Pincet, F., et al. (2011). A conformational switch in complexin is required for synaptotagmin to trigger synaptic fusion. Nat. Struct. Mol. Biol. 18, 934-940.

Hay, J.C., and Martin, T.F.J. (1992). Resolution of regulated secretion into sequential MgATP-dependent and calcium-dependent stages mediated by distinct cytosolic proteins. J. Cell Biol. 119, 139-151.

Hu, Z., Hom, S., Kudze, T., Tong, X.J., Choi, S., Aramuni, G., Zhang, W., and Kaplan, J.M. (2012). Neurexin and neuroligin mediate retrograde synaptic inhibition in c. Elegans. Science 337, 980-984.

Hu, Z. Tong, X.J., Kaplan, J.M. 2013. UNC-13L, UNC-13S and tomosyn for a protein code for fast and slow neurotransmitter release in Caenorhabditis elegans. eLife e00967.

Jackman, S. L., Turecek, J., Belinsky, J. E. & Regehr, W. G. 2016. The calcium sensor synaptotagmin 7 is required for synaptic facilitation. Nature 529, 88-91.

Jahn, R., and Fasshauer, D. (2012). Molecular machines governing exocytosis of synaptic vesicles. Nature 490, 201-207.

Kaeser PS, Regehr WG (2014) Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu. Rev. Physiol. 76:333-363.

Krishnakumar, S.S., Radoff, D.T., Kummel, D., Giraudo, C.G., Li, F., Khandan, L., Baguley, S.W., Coleman, J., Reinisch, K.M., Pincet, F., *et al.* (2011). A conformational switch in complexin is required for synaptotagmin to trigger synaptic fusion. Nat Struct Mol Biol *18*, 934-940.

Lee, H.-K., Yang, H. Su, Z. et al. 2010. Dynamic calcium-dependent stimulation of vesicle fusion by membrane-anchored synaptotagmin 1. Science 328, 760-3.

Littleton, J.T., Stern, M., Perin, M., and Bellen, H.J. (1994). Calcium dependence of neurotransmitter release and rate of spontaneous vesicle fusions are altered in Drosophila synaptotagmin mutants. Proc. Natl. Acad. Sci. USA 91, 10888-10892.

Liu, K. S. *et al.* 2011. RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release. *Science* 334, 1565-1569.

Ma, C., Su, L., Seven, A. Xu, Y. and Rizo, J. 2013. Reconstitution of the vital functions of munc18 and 13 in neurotransmitter release. Science 339, 421-5.

Maximov A, Tang J, Yang X, Pang ZP, Sudhof TC. 2009. Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science 323:516-521.

McNew, J.A., Parlati, F., Fukuda, R., Johnston, R.J., Paz, K., Paumet, F., Sollner, T.H., and Rothman, J.E. (2000). Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407, 153-159.

Mohrmann, R., de Wit, H., Verhage, M., Neher, E., and Sorensen, J.B. (2010). Fast vesicle fusion in living cells requires at least three SNARE complexes. Science 330, 502-505.

Pabst, S., Hazzard, J.W., Antonin, W., Sudhof, T.C., Jahn, R., Rizo, J., and Fasshauer, D. (2000). Selective interaction of complexin with the neuronal SNARE complex. Determination of the binding regions. J. Biol. Chem. 275, 19808-19818.

Rosenmund, C., Sigler, A., Augustin, I., Reim, K., Brose, N., and Rhee, J.S. (2002). Differential control of vesicle priming and short-term plasticity by Munc13 isoforms. Neuron 33, 411-424.

Schiavo, G., Benfenati, F., Poulain, B., Rossetto, O., Polverino de Laureto, P., DasGupta, B.R., and Montecucco, C. (1992). Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359, 832-835.

Schonn JS, Maximov A, Lao Y, Sudhof TC, Sorensen JB (2008) Synaptotagmin-1 and -7 are functionally overlapping Ca2+ sensors for exocytosis in adrenal chromaffin cells. Proc Natl Acad Sci U S A 105:3998-4003.

Shi, L., Shen, Q.T., Kiel, A., Wang, J., Wang, H.W., Melia, T.J., Rothman, J.E., and Pincet, F. (2012). Snare proteins: One to fuse and three to keep the nascent fusion pore open. Science 335, 1355-1359.

Sollner, T., et al. 1993. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318-324.

Spruce, A. E., Breckenridge, L. J., Lee, A. K. & Almers, W. 1990. Properties of the fusion pore that forms during exocytosis of a mast cell secretory vesicle. Neuron 4, 643-654.

Sudhof, T.C. (2012). The presynaptic active zone. Neuron 75, 11-25.

Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474-477.

Sutton, R.B., Fasshauer, D., Jahn, R., and Brunger, A.T. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347-353.

Walent, J.H., Porter, B.W., and Martin, T.F. (1992). A novel 145 kd brain cytosolic protein reconstitutes Ca++-regulated secretion in permeable neuroendocrine cells. Cell 70, 765-775.

Zenisek, D., Steyer, J.A., and Almers, W. (2000). Transport, capture and exocytosis of single synaptic vesicles at active zones. Nature 406, 849-854.

Zhao, W. D. et al. 2016. Hemi-fused structure mediates and controls fusion and fission in live cells. Nature 534, 548-552.