
Multiplying two numbers together in your head is a  
difficult task if you did not learn multiplication tables as  
a child. On the face of it, this is somewhat surprising 
given the remarkable power of the brain to perform 
complex computational tasks, such as coordinating 
limbs, balancing and calculating object trajectories when 
playing a game of tennis. Traditionally, it was thought 
that each individual neuron could only perform a 
weighted sum of its synaptic inputs (a linear operation) 
followed by a nonlinear thresholding operation (all-or-
none response) and that even low level computations, 
such as multiplication of signals, had to be carried out 
by groups of neurons1. Subsequent theoretical work 
suggested that single neurons could act as more power-
ful computational units2–8, and this view has now been 
strengthened by a considerable body of experimental 
work, which shows that even the most humble of the 
brain’s 1011 neurons9 can rapidly perform both sums and 
multiplications on their synaptic inputs. The main focus 
of this Review will be to discuss the various biophysical 
mechanisms that enable an individual neuron to rapidly 
perform arithmetic operations on the signals it receives 
through its synaptic inputs, thereby allowing informa-
tion to be transformed and combined before it is con-
verted into neuronal output. The mechanisms involved 
will be discussed in relation to neuronal morphology 
and the way in which information is represented, as 
this allows identification of the cell types and the neural  
coding regimes in which they are likely to operate.

Encoding information with action potentials
Information can be represented in a number of differ-
ent ways by neural activity, but neural coding is often 
cast in one of two extremes: either as a firing rate or as 

correlations in spike timing. The pioneering work of 
Adrian and Zotterman10,11 established that continuous  
sensory variables such as touch, pressure and muscle  
load can be encoded in the rate of sustained action poten-
tial (AP) firing. Recent intracellular recordings from  
cerebellar granule cells (CGCs) in vivo show that rate-
coded vestibular inputs that signal head velocity are 
linearly encoded at input synapses through the bidirec-
tional modulation of the excitatory postsynaptic current 
frequency and postsynaptic charge12. The way in which 
such a neuron integrates this sustained excitatory rate-
coded synaptic input and transforms it into output firing 
can be simply captured by its input–output (I–O) relation-
ship (FIG. 1a,b). By contrast, in vivo recordings from several 
areas of the neocortex suggest that only a small fraction 
of neurons in a network spike in response to a particular 
sensory stimulus13–17. Under these sparse coding13,14 con-
ditions the mean firing rate of individual neurons is often 
less than 1 Hz15–17 and coding can involve as little as a sin-
gle spike per neuron18. Sparse population coding is a com-
promise between the extremes of local codes, in which 
each neuron in the network represents a single feature 
or concept, and dense holographic codes19 in which each 
feature is represented in all cells, allowing the storage of 
many more features than there are neurons in the network. 
Moreover, theory predicts that the most energy-efficient 
codes for representing information are sparse, as observed 
experimentally20,21. Under sparse coding regimes the neu-
ron acts as a coincidence detector of temporally correlated 
inputs, rather than as an integrator. The I–O relationship 
can be defined as the relationship between spike prob-
ability and the number of coincident inputs (Pspike–Nexc; 
FIG. 2a–c) or, in the temporal domain, as the standard 
deviation of input spike times (Pspike–σinput; FIG. 2d,e).  
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Abstract | The vast computational power of the brain has traditionally been viewed as arising 
from the complex connectivity of neural networks, in which an individual neuron acts as a 
simple linear summation and thresholding device. However, recent studies show that 
individual neurons utilize a wealth of nonlinear mechanisms to transform synaptic input  
into output firing. These mechanisms can arise from synaptic plasticity, synaptic noise, and 
somatic and dendritic conductances. This tool kit of nonlinear mechanisms confers 
considerable computational power on both morphologically simple and more complex 
neurons, enabling them to perform a range of arithmetic operations on signals encoded in  
a variety of different ways.
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This has the advantage that it directly represents how 
synaptic inputs with different temporal correlations are 
transformed by the neuron. Synaptic integration during 
sparse neural activity, when the interval between spikes 
is long, is distinct from that for sustained high frequency 

firing regimes, when the AP and ensuing afterhyper-
polarizing (AHP) conductances can dominate the electri-
cal behaviour of the cell22,23. Differences in the frequency 
of firing and the way in which information is encoded 
are therefore important for understanding the neuronal 
I–O relationship, the computations performed by a single  
neuron and the biophysical mechanisms involved.

Algebraic transformation of I–O relationships
In this section we will use rate-coded signals to illus-
trate how a group of synaptic inputs can rapidly alter 
the shape of a neuron’s I–O relationship in ways that  
correspond to arithmetic operations (FIG. 1). These inputs 
are often referred to as modulatory inputs to distinguish 
them from the driving inputs. Modulatory inputs can be 
excitatory synaptic inputs that convey a different signal 
to the driving inputs, inhibitory inputs, or slow changes 
in neural excitability arising from neuromodulatory sub-
stances such as acetylcholine and serotonin24. However, 
only rapid synaptic modulations are considered  
in this article.

Additive operations. The response R of a neuron when 
a driving input d and a modulatory input m are added, 
can be defined in two different ways. When a modula-
tory input is added to the driving input and then trans-
formed through the spiking mechanism the operation 
can be written as R(d,m) = (d + m). This shifts the I–O 
relationship along the input, or x-axis, with a leftward 
shift corresponding to addition and a rightward shift 
corresponding to subtraction (FIG. 1c). This type of linear 
additive modulation has been observed when the modu-
latory input is a fixed current or conductance22. When 
the modulatory input is independent of the I–O relation-
ship of the driving input, the neuronal response can be 
defined as R(d,m) = (d) + g(m). In this case, a modula-
tory input shifts the I–O relationship along the output 
or y-axis (FIG. 1d), the simplest example being a change 
in the basal firing rate of the neuron in the absence of 
an excitatory drive.

Multiplicative operations. Muliplication of driving and 
modulatory inputs can also be defined in two ways. 
R(d,m) = (d × m) defines multiplicative input modula-
tion (FIG. 1e) and R(d,m) = (d) × g(m) defines output 
modulation (FIG. 1f). In both cases multiplication by a 
constant produces a change in the slope of the rate-
coded I–O relationship, also referred to as a change in 
neuronal gain25. An increase in neuronal gain corresponds 
to a multiplication and a decrease corresponds to a divi-
sion. A change in gain alters the sensitivity of a neuron 
to changes in its driving inputs without affecting its 
selectivity or receptive field properties26. For input gain 
modulation, the maximum value of the I–O relationship 
is not changed following the modulation, but for out-
put gain modulation, the maximum firing rate is scaled 
up or down (FIG. 1e,f). The multiplicative and additive 
operations that are performed by neurons can be sepa-
rated and quantified by fitting their I–O relationships 
with empirical functions before and after modulation 
(Supplementary information S1 (box)).

Figure 1 | The rate-coded neuronal input–output relationship and possible 
arithmetic operations performed by modulatory inputs. a | For rate-coded neuronal 
signalling, a driving input typically consists of asynchronous excitatory synaptic input from 
multiple presynaptic neurons firing in a sustained manner (shown in red). A neuron may 
also receive a modulatory input, such as inhibition (shown in green), that alters the way the 
neuron transforms its synaptic input into output firing rate (shown in blue). b | The 
input–output (I–O) relationship between the total (or mean) driving input rate (d) and the 
response that is represented by the output firing rate (R). The arrow indicates the rheobase 
(minimum synaptic input that generates an action potential). c | Rate-coded I–O 
relationships can be altered by changing the strength of the modulatory input (m), which 
may be mediated by a different inhibitory or excitatory input. If this shifts the I–O 
relationship along the x-axis to the right or left, changing the rheobase but not the shape of 
the curve, an additive operation has been performed on the input (shown by orange 
curves). This input modulation is often referred to as linear integration because the synaptic 
inputs are being summed. d | An additive operation can also be performed on output firing. 
In this case a modulatory input shifts the I–O relationship up or down along the y-axis 
(shown by orange curves). e,f | If the driving and modulatory inputs are multiplied together 
by the neuron, changing the strength of a modulatory input will change the slope, or gain, 
of the I–O relationship without changing the rheobase. A multiplicative operation can 
produce a scaling of the I–O relationship along either the x-axis (input modulation; e)  
or the y-axis (output modulation; f). Although both of these modulations change the gain of 
the I–O relationship, only output gain modulation scales the neuronal dynamic range (f).
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Neuronal gain
The slope of the neuronal 
input–output relationship. 
Changing the neuronal gain 
alters the sensitivity of a 
neuron to changes in  
driving inputs.

Coordinate transform
The conversion of one 
coordinate system to another 
— for example, the brain 
converts visual information 
from retina-centric to 
body-centric coordinates, 
taking account of gaze angle 
during visually guided reaching.

Role of arithmetic operations in vivo
Additive operations. Additive operations can enable 
a neuron to perform the same rate-coded I–O opera-
tion under conditions of different excitatory or inhibi-
tory drive. However, additive operations also alter the 
number of inputs required to reach threshold, which 
may change population sparseness and the ability to 
distinguish different patterns of activation. In the 
temporal domain, additive operations can potentially 
alter the range of temporal correlations in the synaptic 
input to which the neuron responds (FIG. 2e). Additive 
changes in the rate-coded I–O relationship were 
observed in motor neurons in vivo, when synaptic 
input was stimulated on different dendritic branches27 
and when the I–O relationship was assayed with  
current injections28. Additive operations can also 
underlie sophisticated sensory processing — for 
example, theoretical29 and experimental30 studies sug-
gest that populations of neurons can represent uncer-
tainty in sensory variables and that additive operations 
are important for computing with these probabilistic 
population codes29. Although such examples show that 
additive operations are important for signal processing, 
many neuronal computations are thought to require a  
multiplicative operation.

Multiplicative operations. Simple multiplicative opera-
tions in neuronal systems are important for signal ampli-
fication, normalization and preventing saturation of firing 
(FIG. 1e,f), allowing efficient information transmission31.  
Multiplicative operations occur in vivo in a wide range 
of sensory systems. In the monkey parietal cortex, vis-
ual responses of neurons are multiplicatively scaled by 
eye position32,33 and head position34. These and other 
observations are complemented by several theoretical 
studies that have shown that multiplication of sensory 
signals is essential for the coordinate transforms that are 
required for visually guided reaching35–37. Related com-
putations are also found in the vestibular cerebellum, in 
which head-centered vestibular afferent information is 
transformed into earth-referenced self motion38. Indeed, 
gain modulation is widespread26: it occurs during atten-
tional scaling of orientation tuning curves39, of direction  
tuning curves40 and of translation-invariant object 
recognition41, with contrast invariance of orientation  
tuning42 and during auditory processing43. These studies 
show that the brain uses multiplicative operations in a 
wide range of tasks.

Changing the gain of subsets of neurons in a synapti-
cally coupled network will alter the functional connectivity  
and thus the dynamic pattern of neuronal activation. This 

Figure 2 | Neuronal arithmetic during sparse coding. a | Sparse coding relies on coincident synaptic input within a 
brief time-window (Δt) during which the inputs are integrated and potentially drive the cell to cross the action potential 
threshold. b | Spike probability versus the number of coincident driving inputs (P

spike
–N

exc
) is the simplest way to quantify 

the neuron’s input–output (I – O) relationship under these conditions. c | Background synaptic noise is important in 
determining the shape of the P

spike
–N

exc
 relationship73,76 because it determines the width of the membrane voltage 

distribution. The simulation shows a simple integrate-and-fire cell with background voltage noise, driven with  
a synchronous synaptic input (top part). Shifting the voltage distribution without changing its shape by adding a 
hyperpolarizing current introduces a subtractive shift in the P

spike
–N

exc 
relationship (bottom part; shift from black to  

orange traces). By contrast, decreasing the voltage noise increases the gain of the I–O relationship (shift from black  
to green traces). d | The relationship between P

spike
 and driving inputs can also be defined in the temporal domain. In this 

case, the temporal correlation in the driving inputs is defined as the standard deviation of input spike times (σ
input

)48,50. 
Altering the level of noise changes the gain of the P

spike
– σ

input 
relationship47,48. e | Changing the input resistance by altering 

a shunting conductance tends to shift the P
spike

– σ
input 

relationship48. This is due to scaling of the excitatory postsynaptic 
potential (EPSP) and voltage noise, together with altered summation of temporally dispersed inputs, as a result of changes 
in membrane time constant and thus EPSP shape (FIG. 3a). Parts d and e are modified, with permission, from ReF. 48  
© (2005) The American Physiological Society.
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realization has lead to the proposal that gain modulation 
controls the selection of different neuronal assemblies 
used for distinct computational tasks44–46. For neurons 
operating in coincidence-detection mode under sparse 
activation conditions, the gain of the I–O relationship 
also determines the shape of the time-window in which 
inputs can be integrated to generate a spike, with higher 
gain giving a sharper cut-off (FIG. 2d). Thus, through such 
arithmetic operations an individual neuron can poten-
tially control both the width and ‘roll-off ’ of the tempo-
ral correlation window for synaptic integration47,48 and 
hence also control the temporal properties of signals that 
can propagate through the network49,50.

Mechanisms underlying arithmetic operations
Subthreshold synaptic integration and linear opera-
tions. The way in which synaptic inputs are combined 
is largely determined by the electrical properties of 
the membrane. The membrane potential of a neuron 
increases from its resting membrane potential (typically 
–75 mV) during excitatory synaptic input, when current 
flows into the cell through transient conductances at 
each of the activated synapses. The resulting excitatory 
postsynaptic potentials (ePSPs) do not sum linearly 
with increasing numbers of active synapses because 
current flow through a synaptic conductance depends 
on the driving force, which is reduced as the voltage 
increases. Increasing synaptic conductance also lowers 
the resistance of the cell membrane and this reduces 
both the change in voltage produced by a current  
and the membrane time constant. Increasing membrane 
conductance in electrically compact neurons, such as the 
CGCs, therefore scales down the amplitude and speeds 
the decay of ePSPs (FIG. 3a). Although these synaptic 
conductance effects also occur locally in the dendrites of 
morphologically complex cells, such as cortical pyrami-
dal cells, brief conductances arising from distant den-
dritic synapses may have little effect on each other or on 
the somatic input resistance because the space constant  
for conductance is half of that for voltage51,52. Their effect 
on the soma is therefore more like a group of current 
sources that add linearly. These passive subthreshold 
mechanisms contribute to the linearizing integration of 
ePSPs distributed on dendritic trees.

Shunting inhibitory conductances. Inhibitory synapses are 
often located close to the soma, where their conductance 
can have a large effect on somatic input resistance5,52–54 
(and thus spiking) because of the proximity to the spike 
initiation zone. Fast inhibitory transmission is typically 
mediated by GABAA (γ-aminobutyric acid type A) recep-
tors, which conduct Cl– and HCO3

– ions and often have a 
reversal potential close to the resting potential. At resting 
potential, little current is generated by these synapses due 
to the small driving force, but the increase in membrane 
conductance that they introduce short-circuits excitatory 
synaptic currents by locally reducing the input resist-
ance. These shunting inhibitory conductances (also known 
as silent inhibitory conductances), which can be strong 
in vivo54, scale down ePSPs in a multiplicative manner 
(FIG. 3a), in accordance with Ohm’s law, as recognized many 
years ago55,56. Classical theoretical work suggests that the 
arithmetic operations resulting from shunting inhibi-
tion depend on the size and location of the conductance; 
inhibition may have a divisive effect on the ePSP if the 
conductance is large and located close to the soma, but 
may have a subtractive effect if the conductance is small 
and spatially distributed2,57. Inhibitory synapses placed 
between a distal excitatory input and the soma are effec-
tive, especially when located close together2,4,5,8,27. This 
may enable dendritic-branch-specific veto and logical 
AND–NOT operations4, a conclusion that has been strength-
ened by more recent experimental work58. Together, 
these studies of subthreshold interactions of coincident 
excitatory and inhibitory postsynaptic conductances 

Figure 3 | subthreshold effects of shunting conductance and its effect on the 
input–output relationship of a cerebellar granule cell in the absence of noise. 
The effect of shunting inhibition on cerebellar granule cells (CGCs) was investigated in 
acute cerebellar slices using the dynamic clamp technique. a | An excitatory postsynaptic 
potential (EPSP) evoked by an AMPAR (α-amino-3-hydroxy-5-methyl-4-isoxazole 
propionic acid receptor) synaptic conductance waveform (reversal potential 0 mV) that 
was injected during control conditions (shown in black) and during application of a 
1 nanosiemens (nS) tonic shunting inhibitory conductance (reversal potential –75 mV). 
This inhibitory conductance scaled down the amplitude of the EPSP, consistent with 
Ohm’s law, and accelerated the decay of the EPSP as a result of a reduction in the 
membrane time constant (shown in green). b | CGC firing responses to a noise-free 
excitatory conductance step (G

exc
, shown in red). The upper traces show the voltage 

responses to G
exc

 under control conditions (shown in black) and during injection of an 
inhibitory conductance (shown in orange). c | The relationship between mean firing rate 
of a CGC and step excitatory conductance in the presence and absence (control) of an 
inhibitory conductance. The inhibitory conductance produced a purely subtractive input 
modulation (x-axis shift; FIG. 1c) in the neuronal input–output relationship. d | The 
relationship between current flow through the tonic inhibitory conductance and  
the driving excitatory conductance, for subthreshold voltages (+) and during spiking (Δ). 
The inhibitory current depends on the excitatory conductance as the subthreshold 
voltage depolarizes, as expected for a conductance. However, during sustained firing the 
shunting inhibitory conductance behaves like a constant current source22. This explains 
why shunting inhibition has a multiplicative effect on subthreshold inputs but has an 
additive effect during sustained firing under low noise conditions. Figure is modified, 
with permission, from ReF. 23 © (2003) Elsevier.

R E V I E W S

NATURe ReVIeWS | NeuroscieNce  VOlUMe 11 | jUly 2010 | 477

© 20  Macmillan Publishers Limited. All rights reserved10



Nature Reviews | Neuroscience

200 µm

Intracellular
recording

TTXa

c d

b
Before TTX

Average Average

After TTX

10 mV

100 ms
–100 –90 –80 –70 –60 –50 –40

0.0

0.2

0.4

0.6

0.8

Re
la

tiv
e 

co
un

t

Membrane potential (mV)

0 4 2 3 4 5
0

10

20

30

40

50

60

70

TTX

Active

Isyn = gE(EE – Vm)
+ gI(EI – Vm)

gE

gI

Driving current

Mean current (nA)
0.0 0.2 0.4 0.6 0.8 1.0

Fi
rin

g 
ra

te
 (H

z)

0

100

200

300
σ = 6
σ = 4
σ = 2
σ = 0

e

Fi
rin

g 
ra

te
 (H

z)

Driving current (nA)

Vm

= 0×
= 1×
= 2×
= 3×

0.1 nA 0.1 nA

Space constant
The distance over which a 
voltage imposed at a point  
will have decreased to 1/e 
(euler’s number) (~37%) of its 
original value; a measure of 
how far a subtheshold 
potential will spread along an 
axon or dendrite. The thinner  
the dendritic branch, the 
shorter its space constant.

Reversal potential
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electrochemical gradient is 
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Shunting inhibitory 
conductance
(Also known as silent inhibitory 
conductance.) An inhibitory 
conductance that reduces the 
depolarization produced by an 
excitatory current by increasing 
membrane conductance.

Ohm’s law
The current across a conductor 
is linearly proportional to the 
potential difference (voltage).

AND–NOT operation
A logical operation in which an 
output only occurs when one 
input is on and the other is off.

Drifting gratings
A visual stimulus that consists 
of alternating black and  
white bars that drift in a 
particular direction.

suggested that individual neurons could perform a variety  
of multiplicative and logical operations. This led to the 
proposal that shunting inhibition mediates the divisive 
gain modulation required in models of visual cortex to 
account for neural responses to drifting gratings at differ-
ent contrast and orientations59 and for gain modulation  
in electric fish60.

Surprisingly, subsequent work with biologically 
realistic neuronal models predicted that shunting inhi-
bition has a subtractive rather than a divisive effect on 
sustained rate-coded I–O relationships22,61,62. We illus-
trate this with experiments on CGCs (FIG. 3b,c). During 
sustained firing the voltage is clamped close to the spike 
threshold voltage by the powerful potassium conduct-
ances that underlie AP repolarization and spike AHP63. 
This converts the steady shunting conductance into a 
current source22,23 (FIG. 3d), which shifts the relationship 

between output firing and driving current28,64–67 or 
input conductance23, along the input axis in a purely 
subtractive manner (FIG. 3c). These findings implied 
that multiplicative interactions between conductances 
(discussed above for subtheshold integration) did not 
hold for sustained rate-coded signalling. However, an 
important factor had been overlooked in the study of 
neuronal gain; in vivo recordings showed that neurons 
are often bombarded by synaptic conductances, and this  
produces high levels of stochastic voltage noise and 
lowers the input resistance54,68,69 (FIG. 4a), a condition 
not typically present in in vitro slice preparations in 
which long-range synaptic connections are cut. The 
presence of synaptic noise has important implications 
for neuronal computation for both sustained rate-
coded and sparse temporal signalling, as discussed in 
the next section.

Figure 4 | synaptic voltage noise and gain modulation of the rate-coded input–output relationship. a | Schematic 
setup for intracellular voltage recordings from a neocortical pyramidal neuron in a cat under anaesthesia. The 
intracellular voltage is characterized by a high level of noise in each recording period. Blocking synaptic input with local 
injection of tetrodotoxin (TTX), eliminated the voltage noise and increased the input resistance of the cell (see the voltage 
response to a current step of 0.1 nanoamperes (nA)). b | Blocking synaptic input with TTX reduces the variance of the 
intracellular voltage distribution in pyramidal neurons and demonstrates that some cortical cells operate under 
conditions of high levels of synaptically induced voltage noise (active) in vivo. c | The effect of noise on the relationship 
between firing rate and current (F–I) for a cortical interneuron, recorded in an acute slice preparation. As the noise 
increases (σ indicates standard deviation of the voltage noise in mV), the foot of the F–I relationship becomes more 
pronounced, reducing the gain of the relationship and producing a more sigmoid shape. d | The dynamic clamp 
configuration used to inject balanced excitatory (g

E
) and inhibitory (g

I
) synaptic conductance trains (resulting in zero net 

excitatory drive) into neocortical pyramidal cells, mimicking background synaptic input (noise) in the acute slice. Current 
steps were used as driving inputs to assay the neuronal responsiveness. I

syn
 is the synaptic current and E

E
 and E

I
 are the 

excitatory and inhibitory reversal potentials, respectively. e | The relationship between firing rate and the amplitude of  
the driving current steps for different levels of synaptic conductance noise (multiples of X, a balance of excitatory (rate = 
7,000 Hz) and inhibitory synaptic inputs (rate = 3,000 Hz)). As the level of noise increases the gain of the F–I relationship 
was modified in a divisive manner. Part a is modified, with permission, from Nature Reviews Neuroscience ReF. 69 © (2003) 
Macmillan Publishers Ltd. All rights reserved. Part b is modified, with permission, from ReF. 68 © (1999) The American 
Physiological Society. Part c is modified, with permission, from ReF. 80 © (2006) Society for Neuroscience. Parts d and e are 
modified, with permission, from ReF. 66 © (2002) Elsevier.
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Rheobase
The minimum current or 
conductance that produces an 
action potential in a neuron.

Dynamic clamp
An electrode-based electro-
physiological device that uses 
an electrical circuit or 
computer simulation to inject 
artificial conductances into  
a neuron.

Campbell’s theorem
A mathematical theorem that 
describes the relationship 
between the frequency of brief, 
randomly occurring, 
exponentially decaying events 
and the time-averaged value of 
their mean and the variance.

The role of changes in noise and conductance
Synaptic noise. Stochastic noise arising from synaptic 
conductances produces voltage fluctuations, convert-
ing a relatively constant subthreshold voltage into a 
distribution of values (FIG. 4a,b). When investigators 
began to include physiologically relevant levels of 
synaptic noise in their simulations and in vitro experi-
ments, they found that the shape of the I–O relation-
ships for both sparse coincident48,70–76 and sustained 
rate-coded23,42,66,77–82 inputs were fundamentally altered. 
This occurs because voltage fluctuations enable synap-
tic inputs to cross the threshold and trigger a spike even  
when the mean voltage is well below the spike threshold,  
thereby extending the range of excitation over 
which a neuron can signal. This shifts the rheobase  
of the neuronal I–O relationship and decreases the 
slope or gain of both the Pspike–Nexc and the Pspike–σinput 
relationships driven by sparse coincident input48,73,74 
(FIG. 2c,d). This broadens the synaptic input correlation 
window that the neuron can respond to (FIG. 2d). Noise 
has similar effects on the shape of the rate-coded I–O 
relationship. The leftward additive shift was more pro-
nounced when currents were used to drive the cell80   
(FIG. 4c) or in simulations78 than when conductance 
noise was used (FIG. 4d,e). This is because the leftward 
shift in the rate-coded I–O was counteracted by a right-
ward shift introduced by the shunting effect of the input 
conductance66,78. These results show that changing the 
level of noise is a powerful way to change neuronal gain 
irrespective of the coding regime.

Background noise induced by balanced background 
synaptic input. For neurons, such as pyramidal neu-
rons, that require a large number of synaptic inputs to 
reach threshold, high levels of voltage noise can only 
be achieved during uncorrelated (asynchronous) rate-
coded inputs when excitatory and inhibitory synaptic 
conductances are balanced. Under these conditions high 
rates of synaptic conductance can be applied without  
a net excitatory or inhibitory effect. Introducing such a  
noisy conductance input using the dynamic clamp in 
combination with excitation through a noise-free driv-
ing current step (FIG. 4d) allows the level of noise and 
conductance to be altered independently of the exci-
tatory drive66. When excitatory and inhibitory con-
ductances were balanced, the leftward shift in the I–O 
relationship caused by increasing noise was counter-
acted by the rightward shift caused by reduced input 
resistance, leaving a purely multiplicative gain change 
and no additive shift66 (FIG. 4e). For this to occur in vivo, 
a suitably tuned network architecture that supports 
precisely balanced excitation and inhibition, would be 
required. Feedforward and feedback connections in 
cortical circuits may achieve such balance if coupled 
with inhibitory cells that compensate for their low 
numbers with higher sensitivity, firing rate and synap-
tic conductances83–85. However, the effect on neuronal 
gain of increasing the level of noise is not always so 
clean-cut; depending on the cell type and the nature 
of the interactions of noise with Na+ and various AHP 
conductances80,86, neuronal gain can either increase or 

decrease. Nevertheless, these studies are consistent with 
the idea that changes in the level of input noise cause 
gain modulation.

The effect of conductance in the presence of synaptic 
noise. Dynamic clamp experiments and modelling 
show that hyperpolarization and increases in somatic 
membrane conductance introduce subtractive shifts in 
the Pspike–Nexc relationship70,73,74,76. Hyperpolarization 
performs a subtractive operation because additional 
excitation is required to reach the original rheobase 
voltage, and voltage noise and thus gain are unaltered 
(FIG. 2c). For changes in somatic input resistance, which 
occur during shunting inhibition, the ePSP amplitude 
and voltage fluctuations are likely to be scaled down 
equally, leaving the gain of the Pspike–Nexc relationship 
unchanged73. Moreover, nonlinear shunting conduct-
ances can help to linearize such subtractive shifts in the  
Pspike–Nexc relationship87. These studies show that in  
the presence of background noise, adding a hyper-
polarizing current or increasing shunting inhibition 
has a subtractive effect and this narrows the input  
correlation window to which the neuron responds  
(FIG. 2e). experiments on sustained rate-coded I–O  
relationships also suggested that shunting inhibition 
has a purely subtractive effect when the level of synaptic  
input noise is fixed23,66,87.

This view that conductance always has a subtractive 
effect on I–O relationships seems to be at odds with 
theoretical and experimental studies that show that 
simply applying an inhibitory conductance can alter 
neuronal gain23,77,79,88. Indeed, applying a fixed tonic 
inhibitory conductance produced a robust gain change 
in the I–O relationship of CGCs when they were driven 
with synaptic-like rate-coded excitatory conductances 
delivered with the dynamic clamp technique23 (FIG. 5a,b). 
This was not a nonlinear dendritic effect because CGCs 
are among the smallest and simplest neurons in the brain 
and ideally suited to the dynamic clamp technique, as 
their soma and dendrites form a single electrical  
compartment89,90. The resolution of these apparently 
contradictory effects of conductance on the I–O rela-
tionship lay in the fact that the variance of rate-coded 
synaptic conductance trains increases with the mean 
rate according to Campbell’s theorem23,77,91 (FIG. 5c). Rate-
coded inputs therefore introduce a frequency-dependent 
increase in noise, which when combined with a shunting 
conductance produces a gain change without requiring 
an externally driven change in background noise or a 
balanced synaptic input23. However, without balanced 
excitation and inhibition, a subtractive component is 
also present (FIG. 5b). This conductance-mediated gain 
modulation is particularly effective for small cells — 
such as CGCs — with rapid synaptic conductances that 
require few driving inputs to reach threshold, because 
these produce high levels of voltage noise during rate-
coded excitation23. In larger neurons, such as pyramidal 
cells, the voltage noise generated by excitatory input 
alone is relatively small when inputs are asynchronous 
and thus the effect of conductance is largely additive 
under these conditions.
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Power law
A mathematical relationship 
between two quantities (for 
example, x and y) of the form 
y(x)=kxn, in which k is a 
constant and n is the exponent. 
Such relationships have the 
special property that they are 
scale invariant.

Whether a shunting inhibitory conductance can 
modulate rate-coded neuronal gain in the presence of 
a fixed level of noise has also been a matter of debate. 
experimental and theoretical work suggests that con-
ductance does not change neuronal gain in the pres-
ence of fixed noise66,92. However, simulations predict 
that modest gain changes can occur under some  
conditions23,79. Although such gain changes are weaker 
than those for variable noise and only occur for small 
modulatory inputs and relatively low firing rates, the 
mechanism underlying this effect provides insights 

into the mechanisms of noise- and conductance-based 
gain modulation. Noise converts the relationship 
between output firing rate and mean voltage out–Vm 
from a step-like threshold to a smooth function that 
approximates a power law23,42,79,81,82,93 (FIG. 5d). Changes 
in subthreshold voltage caused by a modulatory input 
can be coupled to output spiking through this continu-
ous function. The shape of the out–Vm relationship is 
important as power laws can perform a crude form 
of multiplication81, because additive shifts along the 
x-axis can have a multiplicative action as a function 
of the x-axis (Supplementary information S1 (box)). 
However, for modulatory inputs to produce changes 
in gain without an additive shift66 or for these gain 
changes to be a function of both the x- and y-axes, 
an additional nonlinearity93 or a change in the out–Vm 
relationship is required (R.A.S. and V. Steuber, unpub-
lished observations). Indeed, changes in the exponent 
of the power law are expected if the level of synaptic 
noise changes66, if the frequency of rate-coded excita-
tory input is altered23 or if the rate of an inhibitory 
synaptic input is modified77,79,88. All of these changes 
produce a robust gain change as a function of both 
the x- and y-axes. Thus, synaptic noise enables shunt-
ing inhibition to modulate neuronal gain during sus-
tained firing, thereby providing a biologically plausible 
mechanism for those early models that proposed that 
shunting inhibition performs gain modulation59,60. 
However, this does not generalize to temporally  
correlated signalling, where it is subtractive73 .

Input nonlinearities and gain modulation. Several stud-
ies of neurons in the primary visual cortex (V1) have 
focused on the roles of noise and the resulting power law 
of multiplicative operations on rate-coded signals42,81,82, 
as this can potentially explain how neurons maintain 
their selectivity for stimulus orientation despite large 
changes in image contrast (contrast invariance)42.  
In an interesting twist to our understanding of the 
underlying computational mechanisms, the sensory 
input parameters in such models, which are often rep-
resented as sigmoidal and Gaussian functions, were 
shown to be crucial for gain modulation in the presence 
of a constant level of noise93. When such an additional 
nonlinear input is combined with a power law out–Vm 
relationship (fixed levels of noise), a robust output 
gain modulation occurs by simply altering conduct-
ance or adding current93. More recent work suggests 
that contrast invariance in V1 may arise from multiple 
mechanisms94–96 and that neuronal gain modulation is 
associated with a simultaneous change in voltage noise 
and input resistance in vivo97. A related multiplicative 
transformation that is mediated by nonlinear Na+  
channels98 has also been reported in the locust visual 
system, in neurons that are sensitive to looming objects. 
In summary, studies of the visual system highlight the 
importance of considering all of the linear and non-
linear components arising from the stimulus repre-
sentation and synaptic input, together with noise and 
conductance, to understand how neuronal gain control 
is achieved in the brain.

Figure 5 | inhibition-mediated gain modulation with noisy rate-coded synaptic 
input in cerebellar granule cells. The effect of shunting inhibition on the rate  
coded input-output (I–O) relationship of cerebellar granule cells (CGCs) driven with 
random trains of noisy, synaptic-like conductances in the acute cerebellar slice 
preparation using the dynamic clamp technique. a | A CGC was excited by four 
summed Poisson trains of AMPAR (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic 
acid receptor) synaptic conductances (G

exc
) with a reversal potential of 0 mV under 

control conditions and during a 1 nanosiemens (nS) constant (tonic) inhibitory 
conductance. The resulting relationships between CGC firing rate and the mean 
excitation rate are shown in b. b | Application of the tonic inhibitory conductance 
reduced the slope of the I–O relationship (divisive operation, shown in green) and 
introduced an additive offset (subtractive operation, shown in orange). c | The 
relationship between the variance of random trains of synaptic conductances with 
constant amplitude and the total excitation rate (shown by grey circles). The variance 
increases with rate as predicted by Campbell’s theorem. σ2 is the conductance 
variance, ν is the total synaptic rate, and G(t) is the time course of the synaptic 
conductance waveform. d | The relationship between firing rate and mean voltage for 
control and during 1 nS tonic inhibition. In the presence of noise, this relationship is 
approximated by a power law, which when combined with conductance changes can 
perform a crude form of multiplication81 (shown by solid green and grey lines). In 
contrast to the noise-free case (FIG. 3), a shunting inhibitory conductance has a 
multiplicative effect on the rate-coded input–output relationship owing to synaptic 
inputs exhibiting an excitation-dependent variance. Parts a, b and d are reproduced, 
with permission, from ReF. 23 © (2003) Elesvier. 
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Low-pass filter
A device that attenuates high 
frequency signals but allows 
low frequency signals to  
pass unhindered.

Synaptic depression and gain modulation
The strength of synaptic connections that mediate 
driving input is often highly dynamic on short times-
cales (<10 s) and can increase (resulting in facilitation) 
or decrease (resulting in depression) with increasing  
frequency99. Frequency-dependent short-term depres-
sion (STD)100,101 typically occurs when vesicle supply 
cannot keep up with the presynaptic firing rate102–104 or 
when postsynaptic receptors desensitize104,105. Synapses 
exhibiting STD act as a low-pass filter to steady-state 
rate-coded inputs and preferentially transmit dynamic 
changes in rate, allowing neurons to respond to changes 
in signals rather than their absolute rate106–108. Theoretical 
studies show that STD introduces saturation of the neu-
ronal I–O relationship and can enable synapse-specific  
neuronal gain control96,107,109.

Recently, STD has also been shown to affect the arith-
metic operations produced by changes in shunting inhi-
bition in morphologically simple CGCs110 (FIG. 6a). How 
does the presence of STD in the excitatory input affect 
the neuronal computation performed by a modulatory 
inhibitory input? The first clue came from the observa-
tion that CGCs integrate excitatory conductance from 
depressing and non-depressing synaptic conductances 
in a similar way (FIG. 6b). The second clue came from the  
relationship between presynaptic input rate and  
the time-averaged excitatory synaptic conductance, 
which was a saturating exponential function (FIG. 6c). 
This frequency-dependent nonlinearity introduced by 
STD transforms inhibition-induced additive shifts into 
a multiplicative gain change110, thereby increasing the 
gain change performed by tonic inhibition by fourfold 
compared with that induced by noise alone (FIG. 6d). 
The size of the gain modulation depends on both the 
level of inhibition and the level of STD, and there is 
always a residual additive component (FIG. 6d). The time 
course of STD-based gain modulation depends on the 
input frequency and how quickly the synapse depresses 
to a steady-state level. Cerebellar mossy fibres fire  
up to 1 kHz in vivo111, resulting in the rapid onset of 
STD104 and fast STD-based gain modulation (4–75 ms) 
at the synapses between mossy fibres and granule cells110. 
However, STD-based gain modulation at synapses that 
are tuned for low firing rates will be slower.

To determine whether STD-based gain control oper-
ates on distributed synaptic input in morphologically 
complex neurons, synaptic integration was simulated 
in a multi-compartment layer 5 (l5) pyramidal neu-
ron model110 (FIG. 6e). When the amplitude of each of 
the 400 excitatory synaptic conductances was fixed, 
altering the rate of 30 inhibitory inputs (both excita-
tory and inhibitory inputs were randomly distributed 
over the basolateral dendritic tree) produced a largely 
additive shift in the sustained rate-coded I–O relation-
ship (FIG. 6f). This is consistent with the prevailing view 
that distributed, asynchronous inputs are integrated 
in a linear manner112–116. By contrast, when STD was 
included in the excitatory inputs, excitatory and inhibi-
tory synaptic inputs were multiplied together, produc-
ing robust gain changes (FIG. 6g). Different levels of 
inhibition scaled down the dynamic range of the I–O 

relationship in pyramidal cell simulations and in experi-
ments with CGCs, showing that inhibition results in 
gain modulation of the output (FIG. 1f) rather than the 
input (FIG. 1e). As STD converts additive operations into 
multiplicative operations, it should enable rate-coded 
synaptic inputs that are located anywhere on the soma 
or dendrites to be multiplied together. Indeed, the fact 
that STD is more pronounced for distal synapses on l5 
neurons117,118 raises the possibility that this mechanism 
combines spatially separate inputs in these cells in a 
multiplicative manner110. Moreover, as STD can increase 
with long-term potentiation119 or decrease with long-
term depression120, these arithmetic operations may 
depend on prior activity of the connection and thus 
potentially encode learning and routing of information  
through networks46.

The role of dendrites in neuronal arithmetic
As the field of dendritic computation has been discussed 
extensively in several excellent recent reviews121–125  
and in a book126, in the remaining sections we will 
only highlight specific examples of how dendritic 
mechanisms may carry out arithmetic operations 
and the coding regimes under which they are likely 
to operate.

Linear dendritic integration. As discussed earlier, when 
synaptic inputs are distributed over the dendritic tree 
they tend to sum approximately linearly owing to the 
passive properties of dendrites114–116,127. But when inputs 
are clustered one would expect sublinear ePSP summa-
tion owing to a greater reduction in driving force and 
membrane shunting. However, nonlinear dendritic con-
ductances — such as NMDA (N-methyl-d-aspartate) 
receptors, Na+ channels and Ca2+ channels — can boost 
synaptic potentials when depolarized, whereas A-type 
K+ conductances can dampen them112,128,129. A balance 
of these active conductances has been shown to underlie 
linear summation of synaptic inputs on the same den-
dritic branch of cultured pyramidal cells, counteracting 
nonlinearities introduced by reduced driving force and 
shunting112,113. Spines have also been proposed to pro-
mote linear synaptic integration by introducing a resist-
ance that protects the main dendrite from the shunting 
effects of the synaptic conductance130,131. However, this 
mechanism requires that spine necks have a high resist-
ance, a feature that is not supported by recent voltage dye 
measurements in the same cells, which provided esti-
mates of ≤500 mΩ and an attenuation of somatic ePSPs 
of <15%132. Changes in shunting inhibition alone tend to 
produce subtractive effects on asynchronous rate-coded 
signals in complex cells due to the remote input and low 
noise (FIG. 6f), but a recent theoretical study suggests that 
by controlling the level of attenuation of current flow-
ing from the dendrite to the soma, shunting inhibition 
could reduce neuronal gain133. However, it is unclear 
whether this would work effectively for discrete synaptic  
conductances and it is also unclear how depend-
ent the gain modulation is on the dendritic location  
of the inhibitory shunt, as this can have a big effect on  
ePSP scaling2,4,5,8,27,57,58.
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Figure 6 | short-term synaptic depression converts inhibition- 
mediated additive shifts in the rate-coded input–output relationship 
into multiplicative gain changes in morphologically simple and 
complex cells. a | A morphologically simple cerebellar granule cell (CGC) 
with AMPAR (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 
receptor)-mediated synaptic conductance trains showing short-term 
depression (+STD; shown by blue traces) measured by stimulating mossy 
fibres at two frequencies. Artificial synaptic conductance trains without STD 
were also constructed (–STD; shown by red traces). Dashed lines show the 
time averaged conductance (G

exc
) with and without STD. b | The relationship 

between CGC firing rate and G
exc

 obtained with the dynamic clamp 
technique. Depressing and non-depressing synaptic conductance trains 
produced similar CGC firing rates in control conditions and during a 0.5 
nanosiemens (nS) constant (tonic) inhibitory conductance, indicating that 
they are integrated in a similar manner. Lines are fits to Hill-type functions 
(Supplementary information S1 (box)) and error bars show the standard error 
of the mean. c | The relationship between G

exc
 and mean input rate across 

four inputs with and without STD. Without STD the relationship is linear, as 
expected for summing identical waveforms. STD introduces a nonlinear 
saturating exponential function between input rate and G

exc
.  

d | CGC input–output (I–O) relationships with and without STD and  

their modulation by a 0.5 nS tonic inhibitory conductance. STD in the driving 
input (c) amplifies the gain change observed with tonic inhibition by 
transforming the additive component into a multiplicative scaling.  
e | A morphologically complex layer 5 pyramidal neuron model178. The model 
shows random locations of excitatory synapses (shown by red circles) and 
inhibitory synapses (shown by green circles) distributed over the basolateral 
dendritic tree110, and spiking is shown below. This simulation was built with 
neuroConstruct172 and run on the NEURON simulator179. f | A conductance 
train and the I–O relationship for non-depressing excitatory synaptic input 
(–STD) for control conditions (shown by red squares) and for various rates of 
synaptic inhibition (shown by yellow squares). Synaptic inhibition introduced 
an additive shift along the driving axis consistent with linear integration.  
g | Same as f but including STD in the excitatory synaptic inputs (+STD alone, 
shown by dark blue circles; +STD and inhibition, shown by grey circles). STD 
changed the effects of inhibition from largely additive (f) to a largely 
multiplicative operation (g). Scaling down of the I–O relationship indicates 
an output gain modulation (FIG. 1f). Synaptic conductance waveforms and 
STD used in the simulation were matched to experimental data for layer 5 
synaptic connections110. Part a is modified, with permission, from ReF. 90  
© (2003) Society for Neuroscience. Parts b–g are modified, with permission, 
from Nature ReF. 110 © (2009) Macmillan Publishers Ltd. All rights reserved. 

R E V I E W S

482 | jUly 2010 | VOlUMe 11  www.nature.com/reviews/neuro

© 20  Macmillan Publishers Limited. All rights reserved10

http://www.nature.com/nrn/journal/v11/n7/suppinfo/nrn2864.html
http://www.neuroconstruct.org
http://www.neuron.yale.edu
http://www.nature.com


Cable theory
This refers to the mathematical 
equations that describe how 
electrical signals propagate in 
space and time in spatially 
extended neurons.

Two-photon glutamate 
uncaging
The release of glutamate from 
a ‘caged’ glutamate compound 
using two-photon excitation.

Nonlinear dendritic integration of spatially segregated 
inputs. Synaptic inputs from different neuronal sources 
can be located on spatially distinct subregions of the 
dendritic tree. Cortical l5 pyramidal cells are a partic-
ularly striking example, with distinct synaptic inputs 
on the basolateral dendrites in l5 and apical tufts 
in layer 1 at a distance of approximately 1 mm from 
the soma. Detecting temporally correlated synaptic  
input across layers raises a number of difficulties for 
the cell. Firstly, synaptic integration varies with loca-
tion; a shorter time-window is required for combining 
synaptic inputs at distal locations (~10 ms) than at the 
soma (~50 ms window), because the dendritic ePSP 
has faster kinetics due to the shorter membrane time 
constant in the dendrite117. Secondly, modest synaptic 
inputs to the apical tufts produce only weak responses 
at the soma117 because they are heavily attenuated as 
they propagate along the dendrite, as predicted by  
cable theory7,134. However, synaptic inputs can be ampli-
fied by Na+ conductances in basal dendrites129,135 and 
the apical tufts127,136,137 of pyramidal cells. Active den-
dritic conductances may therefore alter the impact 
of synapses at different locations on the dendritic 
tree138,139. Moreover, Ca2+ conductances in the apical 
dendrite of l5 cells can amplify coincident synaptic 
input at the tuft and generate dendritic spikes136,140–142. 
Back-propagating APs lower the threshold for these 
Ca2+ dendritic spikes, thereby enabling the cell to 
associate spatially separated signals141. The impact of 
spatially segregated, temporally correlated synaptic 
inputs therefore depends on both the type of voltage-
dependent conductances and their spatial distribution 
in the dendritic membrane.

Pyramidal cells also provide clear examples of how 
active dendritic conductances can contribute to gain 
modulation of segregated inputs during sustained fir-
ing. Dendritic recordings show that sustained injec-
tion of current noise into the distal dentritic tuft can 
increase the gain and reduce the rheobase of the firing 
rate–current response at the soma143. This multiplica-
tion of spatially separated inputs is predominantly due 
to Ca2+ channels143, but persistent Na+ channels may 
contribute to some boosting effects137,144 and cancel 
subtractive effects by shifting the I–O relationship to 
the left135. A robust divisive gain modulation of the fir-
ing rate–current relationship was observed in pyrami-
dal cells of electric fish in the presence of a dendritic 
GABAA receptor conductance145. Dendritic Na+ chan-
nels underlie this effect by supporting back-propagating 
APs, which produced brief depolarizing after-poten-
tials (DAPs), counteracting the spike in AHP at the 
soma. Dendritic inhibition reduces the DAP by speed-
ing up repolarization of the back-propagating APs, 
revealing a larger AHP at the soma and thus reduced 
neuronal gain145,146. By contrast, when inhibition was 
applied to the soma, the back-propagating AP, DAP 
and AHP were unaffected and inhibition produced 
a conventional subtractive shift in the I–O relation-
ship. This potentially enables inhibitory interneu-
ron populations that specifically target dendrites or 
the soma to carry out distinct arithmetic operations 

on sustained rate-coded inputs145. These nonlinear 
dendritic mechanisms may enable pyramidal cells to 
combine spatially segregated synaptic inputs in a multi-
plicative manner, both for sparse temporally correlated  
and sustained rate-coded signalling regimes.

Nonlinear dendritic integration of spatially clustered 
synapses. Clustered excitatory synaptic inputs may 
produce a sufficiently large local depolarization to 
activate nonlinear dendritic mechanisms. Theoretical 
work suggests that such reductions in driving force 
in the dendrite could saturate the synaptic response 
and amplify inhibition- and noise-mediated gain 
modulation of sustained rate-coded signals79. local 
depolarizations may also trigger regenerative den-
dritic events mediated by voltage-gated conductances. 
Dendritic Na+ channels have been shown to amplify 
subthreshold ePSPs in a multiplicative manner and 
speed their rise116,129,135,137. Regenerative dendritic 
Na+ spikes in pyramidal cells129,147,148 can be localized 
to specific branches, modified in a branch-specific 
manner149 and selectively activated by synaptic inputs 
that are clustered in space and time116,127,150–152. These 
features have generated considerable interest because 
they may enable individual dendritic branches to act 
as nonlinear thresholding units. experiments using  
two-photon glutamate uncaging to mimic different 
patterns of synaptic input suggest that ~20 synaptic 
inputs (~5% of the total) are required to trigger a 
local dendritic Na+ spike in radial oblique dendrites 
of CA1 pyramidal cells151. Dendritic patching of basal 
dendrites of l5 pyramidal cells gave comparable esti-
mates and revealed rapidly decaying ePSPs, with a 
space constant of only 50 μm, indicating that voltage 
changes can be localized to an individual branch127. 
The rapid membrane time constant in these fine den-
drites means that local synaptic inputs have to be 
highly synchronized (3–6 ms time-window) to trigger  
a dendritic Na+ spike117,127,151. These properties, together 
with the fact that dendritic Na+ spikes are suppressed 
for hundreds of milliseconds following a spike owing 
to Na+ channel inactivation (whether triggered locally 
within a branch152 or globally across the dendrite by 
a back-propagating AP129,152), suggest that these den-
dritic Na+ conductances are tuned to amplify sparse, 
temporally correlated inputs (FIG. 2), rather than to 
contribute to sustained rate-coded signalling112–116. By 
selectively increasing the gain of dendritic branches 
that receive temporally correlated inputs, Na+ con-
ductances may form distinct computational compart-
ments and enhance the precision of spike output153. 
Such dendritic-branch-specific thresholding units 
may substantially enhance the computational power 
of a neuron154,155 and may potentially link together 
to form a functional structure that is analogous to a 
two-layer neural network (FIG. 7d) with comparable  
computational power156,159.

Synaptic NMDA receptors (NMDARs) can also 
amplify clustered synaptic inputs (FIG. 7a,b). Their highly 
nonlinear voltage-dependence, which is caused by the 
Mg2+ block of the NMDAR channel158, can produce 
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regenerative voltage depolarizations in the dendrite159. 
These so-called NMDAR spikes are spatially restricted 
to sites of synaptic input owing to their glutamate-
dependence and are unlikely to actively propagate159. 
NMDAR spikes last 50–100 ms156,159,160, but modelling 
predicts that they can be curtailed by smaller inhibitory 
synaptic conductances on the dendrite161. NMDARs 
on hyperpolarized regions of the dendrite exhibit a 
‘memory’ of the prior synaptic activity for the 40 ms or 
so that glutamate (and glycine) remains bound to the 
receptors156. This can be ‘unlocked’ upon depolariza-
tion, when the Mg2+ block of the channel is relieved, 
allowing glutamate-bound NMDARs to pass current. 

This mechanism, which can amplify subsequent gluta-
matergic inputs to the same dendrite156 (FIG. 7c), is local 
because the space constant for the ePSP is short in thin 
dendrites of pyramidal cells127. A number of other dif-
ferences between Na+ spikes and NMDAR spikes are 
worth noting. NMDAR spikes are slower rising and the 
time-window for coincidence of the presynaptic inputs 
is tenfold larger than for Na+ spikes, allowing activation  
with less temporal precision. In addition, the duration 
of the NMDAR spike is sufficiently long to act as a  
coincident detector and also interact with short-dura-
tion rate-coded bursts of input. lastly, NMDARs do not 
become inactivated as rapidly as dendritic Na+ channels, 

Figure 7 | clustered synaptic input activates local dendritic nonlinearities which could form the basis of 
branch specific computation. a | Cartoons showing layer 5 cortical pyramidal cells with the location of activated 
synaptic inputs and the recording electrode. ‘Within branch’ refers to two inputs (A and B) that synapse onto the same 
dendritic branch (left), and ‘between branches’ corresponds to two inputs that synapse onto different branches (right). 
Traces show the somatic responses to a paired-pulse synaptic stimulation protocol. Black traces show the two synaptic 
inputs stimulated individually, blue traces show the predicted response for simultaneous activation (assuming linear 
summation) and red traces show the measured response for intermediate strength stimulation. The within-branch 
response was supralinear, whereas the response between branches was linear. This effect was blocked by a selective 
NMDAR (N-methyl-d-aspartate receptor) antagonist. b | Responses for the two input scenarios; the between-branches 
configuration (shown in green; the dashed line indicates linearity) and the within-branch configuration (shown in red). 
The nonlinear effects of NMDARs are seen when excitatory postsynaptic potentials (EPSPs) are a few millivolts in 
amplitude. However, these experiments were carried out in the presence of a GABA

A
 (α-aminobutyric acid type A) 

receptor antagonist, which may favour the occurrence of NMDA spikes161. c | The difference between the arithmetic 
sum of individual inputs (shown by blue squares) and paired-pulse protocols with different intervals between the 
pulses. The supralinear response of the within-branch configuration occurs when the two synaptic inputs occur within 
approximately 40 ms indicates that synaptic NMDAR activation has a ‘memory’ of prior input onto the branch over this 
timescale. d | A cartoon of a pyramidal cell with n

i
 clustered synaptic inputs on each of the dendritic branches. A 

nonlinear dendritic mechanism, such as NMDAR spikes, introduces a nonlinear sigmoidal input–output function (S(n
i
)) 

to each of the subcompartments. The weights of the subcompartments (α
i
) are then combined with the somatic spike 

threshold nonlinearity (g) to produce output (y). It has been proposed that the presence of multiple dendritic 
subcompartments each with a nonlinear thresholding element could enable an individual pyramidal cell to act like a 
two-layer network of neurons, thereby enhancing its computational power. Parts a–c modified, with permission, from 
Nature Neuroscience ReF. 156 © (2004) Macmillan Publishers Ltd. All rights reserved. Part d modified, with permission, 
from ReF. 157 © (2003) Elsevier.  
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a feature that might be important during sustained fir-
ing. NMDARs are an attractive local nonlinear dendritic 
mechanism that could alter neuronal gain depending on 
the spatio-temporal correlation of the input. However, 
it is presently unclear how robust NMDAR spikes are 
in the presence of the substantial inhibitory input that 
occurs in vivo54,161.

Although nonlinear dendritic mechanisms have been 
discussed separately, in reality a dendritic excitability 
is determined by a combination of dendritic conduct-
ances. Indeed, a recent study suggests that clustered syn-
aptic inputs onto multiple thin dendrites in the tuft of l5 
pyramidal cells can be amplified by both NMDAR and 
Na+ channels and then trigger a forward-propagating  
Ca2+ spike in the apical dendrite136. Nonlinear dendritic 
mechanisms that are activated by clustered inputs 
require that synapses project to a particular dendritic 
branch and that their spike latencies are restricted to 
just a few milliseconds. Such mechanisms are likely  
to increase the gain of the Pspike–σinput relationship, poten-
tially allowing better discrimination of spatio-temporal 
patterns of synaptic input in sparse coding regimes162. 
However, the precise spatio-temporal correlations 
required for activation of local dendritic nonlinearities 
impose exacting constraints, given the temporal vari-
ability of sensory input and the fact that many excitatory 
axons project diffusely onto multiple dendritic branches. 
Indeed, a recent two-photon imaging study of dendritic 
visual processing in vivo found no evidence for segre-
gation of orientation tuning onto specific branches163. 
Nevertheless, a recent study that modelled synaptic acti-
vation in l5 cells predicted that NMDAR spikes could 
also be activated by inputs distributed randomly over 
the apical tuft region136. Determining the importance 
of clustered synaptic inputs for dendritic computation 
will require a better understanding of the functional  
connectivity of networks in the brain.

Conclusions
Arithmetic operations allow neurons to combine and 
transform different signals and to discriminate spa-
tial and temporal correlations in their synaptic inputs. 
This Review shows that both morphologically simple 
and complex neurons possess a number of biophysi-
cal mechanisms that enable them to perform rapid 
arithmetic operations on signals encoded in different 
ways (FIG. 8). However, the presence of multiple inter-
acting nonlinear mechanisms and stochastic noise, 
together with the often mixed additive and multiplica-
tive components of arithmetic operations has made the 
unequivocal identification of the underlying biophysi-
cal mechanisms difficult. Nevertheless, a number of 
conclusions can be drawn from studies in this rapidly 
expanding field.

Relationship between biophysical mechanisms and 
coding regimes. Although information is likely to be 
encoded by APs on a continuum of timescales47, at the 
limits neurons can act either as integrators of sustained 
rate-coded inputs or as coincidence detectors of sparse 
temporally correlated signals. Appreciation of this 

apparent dichotomy of coding can help to define the 
neuronal I–O relationship and identify the arithmetic 
operation being performed, as well as the underlying 
biophysical mechanisms (FIG. 8). Synaptic noise, which 
fundamentally changes the integration properties of 
neurons, can have similar multiplicative and additive 
effects on I–O relationships under sparse temporal 
and sustained rate-coded regimes. Changes in synaptic 
noise can therefore be considered a general mechanism 
for neuronal arithmetic.

Other mechanisms seem tuned for particular coding 
regimes. For example, changes in shunting inhibition, 
in concert with high levels of synaptic-input-depend-
ent noise23,77, synaptic STD110, dendritic Na+ channels 
(which can produce a DAP)145 or an input-dependent  
nonlinearity93, can only control neural gain under sustained  
rate-coded signalling regimes, as conductance changes 
produce additive shifts during temporally correlated  
signalling73. In sparse signalling regimes, nonlinear den-
dritic conductances — such as Na+ channels in CA1 cells 
— seem to be best suited to act as coincidence detectors151,  
as they amplify the ePSP during spatio-temporally cor-
related inputs and inactivate152 under sustained firing  
conditions. There are also mechanisms that fall between 
these coding extremes and that are not as general as 
noise and conductance; NMDA receptors are well 
suited to act as spatio-temporal coincidence detectors 
with a longer integration window than for Na+ channels 
and may also be able to interact with brief rate-coded 
bursts136,156. In summary, different nonlinear processes 
seem to operate under sustained rate-coding and sparse 
temporally correlated signalling regimes, allowing neu-
rons to perform arithmetic computations on information  
that is encoded in different ways.

Simple and complex cells — local and segregated mech-
anisms. even the simplest of neurons, such as CGCs, 
can perform neuronal arithmetic (FIG. 8). experiments 
on these cells show that computations depend on the 
properties of the synaptic input: shunting inhibition 
performs a subtractive operation on the I–O relation-
ship when excitation is mediated by noise-free con-
ductance steps, but in the presence of input-dependent 
noise and STD, these neurons perform a largely multi-
plicative operation23,110. Both simple and complex cells 
can use these synaptic mechanisms to transform the 
linear integration of excitatory and inhibitory con-
ductances into nonlinear multiplicative operations 
(FIG. 8). In contrast to simple cells, the dendritic trees 
of morphologically complex cells often form multiple 
interconnected electrical compartments. Dendritic 
nonlinearities can be used to counteract local non-
linear driving force in these compartments — which 
allows linear additive integration112,113 — or they can 
be used to multiply together synaptic inputs on dif-
ferent parts of the dendrite. Shunting inhibition com-
bined with noise changes66 and/or STD110, can perform 
these functions during sustained rate-coded signalling, 
as can dendritic Ca2+ conductances143 and dendritic 
inhibition combined with dendritic Na+ channels that 
support back-propagating APs and DAPs145. Complex 
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cells can also perform local processing; dendritic Na+ 
channels (in CA1 cells151) and NMDAR spikes156 only 
become activated with clustered synaptic input and 
may enable dendritic-branch-specific computations of 
temporally coded signals.

Neurons are endowed with an extensive ‘tool kit’ of 
biophysical mechanisms that enable them to perform 
arithmetic operations on their synaptic inputs, irre-
spective of whether they are morphologically simple 
or complex or whether they operate as integrators of  
sustained rate-coded input or coincident detectors  
of sparse temporally correlated signals (FIG. 8). The 
existence of such a tool kit suggests that the individual 
neurons are powerful computational devices in their 
own right.

Future directions
What types of neural computation occur in vivo? A 
key challenge in neuronal computation is to establish 
which of the potential biophysical mechanisms identi-
fied are actually used for specific computational tasks in 
the brain. Most work on neural computation to date has 
relied on electrophysiology and uncaging methods in 
acute slice preparations or on modelling. Although some 
in vivo studies support the existence of specific mecha-
nisms, such as STD-164, noise-, and conductance-based 
gain modulation43,97 and dendritic processing163,165,166,  
further in vivo investigations are required to confirm 
which mechanisms are involved in neuronal arithmetic. 
It will also be important to test the hypothesis that den-
dritic trees of complex neurons act as multi-compartment 
processors155 by establishing whether spatial clustering 
of synaptic connectivity occurs163,167 and whether the 
temporal coincidence of sensory-evoked inputs are suf-
ficiently precise to activate local dendritic nonlinearities. 
Although these questions are difficult to address in vivo 
without anaesthetics, which can change neuronal excit-
ability and synaptic conductances168, recent technological 
advances that allow whole-cell patch-clamp recordings169 
and two-photon imaging to be carried out in awake  
animals170 suggest that this type of study is now feasible.

Linking in vivo to in vitro and modelling. Information 
from in vivo recordings can make in vitro experiments 
and computer models more realistic and predictions 
more reliable. Acute slice preparations allow manipu-
lation and control of neuronal activity, rendering this 
preparation invaluable for investigating neural com-
putation. However, new approaches are required to 
reproduce in vitro the spatial and temporal patterns 
of activation onto dendritic trees observed in vivo163,165 
and to examine the fine connectivity patterns in neu-
ral networks171. Such information is relatively easy to 
implement in models with interoperable software tools, 
such as neuroConstruct, which allows the creation of 
three-dimensional network models with a high degree 
of anatomical and physiological detail172 (FIG. 6), but 
these patterns are more difficult to reproduce in vitro. 
Realistic synaptic-like conductances can be mimicked 
with a dynamic clamp23,51,66,73,74,110,173, but this technique 
has limitations for complex neurons because conduct-
ance injection is usually restricted to the soma. Two-
photon glutamate uncaging is currently the most precise 
way to mimic different spatio-temporal input patterns, 
but available caged glutamate compounds block inhibi-
tory transmission174 and are relatively insensitive to 
two-photon excitation, necessitating high light-powers, 
which can be phototoxic175. New caged compounds176 
and optogenetic methods177 provide powerful alterna-
tive approaches, potentially allowing in vivo patterns 
of activity to be reproduced in vitro. With these newly 
emerging experimental and modelling technologies, it 
will be possible to gain a deeper understanding of the 
mechanistic basis of neural arithmetic and to identify 
which mechanisms are used by the brain to solve the 
complex computational problems that we experience 
every day.

Figure 8 | summary of biophysical mechanisms underlying rapid neuronal 
arithmetic. Mechanisms that may underlie rapid addition (shown in red) and 
subtraction (shown in orange) or multiplication (shown in blue) and division (shown in 
green) of synaptic input in cells with simple and complex morphologies. The upper two 
rows correspond to sustained rate-coded signalling while the bottom two correspond to  
sparse temporally coded signalling. As indicated by the graphs on the left, rows one and 
three correspond to additive operations, whereas rows two and four correspond to 
multiplicative operations. Overlap of boxes between additive and multiplicative regions 
indicates mixed operations. DAP, depolarizing after potential; NMDA, N-methyl-d-
aspartate; STD, short term depression.

R E V I E W S

486 | jUly 2010 | VOlUMe 11  www.nature.com/reviews/neuro

© 20  Macmillan Publishers Limited. All rights reserved10

http://www.neuroconstruct.org


1. McCulloch, W. S. & Pitts, W. A logical calculus of the 
ideas immanent in nervous activity. Bull. Math. 
Biophys. 5, 115–133 (1943).

2. Blomfield, S. Arithmetical operations performed by 
nerve cells. Brain Res. 69, 115–124 (1974).
A pioneering theoretical study that predicted that 
synaptic interactions in a single neuron could be 
additive or multiplicative.

3. Barlow, H. B. & Levick, W. R. The mechanism of 
directionally selective units in rabbit’s retina. 
J. Physiol. 178, 477–504 (1965).

4. Koch, C., Poggio, T. & Torre, V. Nonlinear interactions 
in a dendritic tree: localization, timing and role in 
information processing. Proc. Natl Acad. Sci. USA 50, 
2799–2802 (1983).

5. Jack, J. J. B., Noble, D. & Tsien, R. W. Electric Current 
Flow in Excitable Cells (Clarendon Press, Oxford, 
1975).

6. Rall, W. in Neuronal Theory and Modeling (ed. Reiss, 
R. F.) 73–97 (Stanford Univ. Press, 1964).

7. Rall, W., Burke, R. E., Smith, T. G., Nelson, P. G. & 
Frank, K. Dendritic location of synapses and possible 
mechanisms for the monosynaptic EPSP in 
motoneurons. J. Neurophysiol. 30, 1169–1193 
(1967).

8. Torre, V. & Poggio, T. A synaptic mechanism possibly 
underlying directional selectivity to motion. Proc. 
R. Soc. Lond. B 202, 409–416 (1978).

9. Braitenberg, V. Brain size and number of neurons: an 
exercise in synthetic neuroanatomy. J. Comput. 
Neurosci. 10, 71–77 (2001).

10. Adrian, E. D. & Zotterman, Y. The impulses produced 
by sensory nerve endings. Part 3. Impulses set up by 
touch and pressure. J. Physiol. 61, 465–483  
(1926).

11. Adrian, E. D. & Zotterman, Y. The impulses produced 
by sensory nerve-endings. Part 2. The response of a 
single end-organ. J. Physiol. 61, 151–171 (1926).

12. Arenz, A., Silver, R. A., Schaefer, A. T. & Margrie, T. W. 
The contribution of single synapses to sensory 
representation in vivo. Science 321, 977–980 
(2008).

13. Vinje, W. E. & Gallant, J. L. Sparse coding and 
decorrelation in primary visual cortex during natural 
vision. Science 287, 1273–1276 (2000).

14. Olshausen, B. A. & Field, D. J. Sparse coding of 
sensory inputs. Curr. Opin. Neurobiol. 14, 481–487 
(2004).

15. Kerr, J. N. et al. Spatial organization of neuronal 
population responses in layer 2/3 of rat barrel cortex. 
J. Neurosci. 27, 13316–13328 (2007).

16. Brecht, M., Roth, A. & Sakmann, B. Dynamic receptive 
fields of reconstructed pyramidal cells in layers 3 and 
2 of rat somatosensory barrel cortex. J. Physiol. 553, 
243–265 (2003).

17. Margrie, T. W., Brecht, M. & Sakmann, B. In vivo, low-
resistance, whole-cell recordings from neurons in the 
anaesthetized and awake mammalian brain. Pflugers 
Arch. 444, 491–498 (2002).

18. Brecht, M. & Sakmann, B. Dynamic representation of 
whisker deflection by synaptic potentials in spiny 
stellate and pyramidal cells in the barrels and septa of 
layer 4 rat somatosensory cortex. J. Physiol. 543, 
49–70 (2002).

19. Földiák, P. in The Handbook of Brain Theory and 
Neural Networks. (ed. Arbib, M. A.) 1064–1068 (MIT 
Press, 2002).

20. Levy, W. B. & Baxter, R. A. Energy efficient neural 
codes. Neural Comput. 8, 531–543 (1996).

21. Attwell, D. & Laughlin, S. B. An energy budget for 
signaling in the grey matter of the brain. J. Cereb. 
Blood Flow Metab. 21, 1133–1145 (2001).

22. Holt, G. R. & Koch, C. Shunting inhibition does not 
have a divisive effect on firing rates. Neural Comput. 
9, 1001–1013 (1997).
An influential theoretical study that predicted that 
shunting inhibition has a subractive effect on the 
rate-coded I–O relationship. It includes an elegant 
analysis of why inhibitory shunting conductances 
behave like current sources during sustained firing.

23. Mitchell, S. J. & Silver, R. A. Shunting inhibition 
modulates neuronal gain during synaptic excitation. 
Neuron 38, 433–445 (2003).
Experimental study on CGCs that shows that 
neuronal gain can be modulated by a shunting 
inhibitory conductance when excitation is mediated 
by noisy rate-coded synaptic inputs.

24. McCormick, D. A. Neurotransmitter actions in the 
thalamus and cerebral cortex and their role in 
neuromodulation of thalamocortical activity. Prog. 
Neurobiol. 39, 337–388 (1992).

25. Salinas, E. & Thier, P. Gain modulation: a major 
computational principle of the central nervous system. 
Neuron 27, 15–21 (2000).

26. Salinas, E. & Sejnowski, T. J. Gain modulation in the 
central nervous system: where behavior, 
neurophysiology, and computation meet. 
Neuroscientist 7, 430–440 (2001).

27. Skydsgaard, M. & Hounsgaard, J. Spatial integration 
of local transmitter responses in motoneurones of the 
turtle spinal cord in vitro. J. Physiol. 479, 233–246 
(1994).

28. Granit, R., Kernell, D. & Lamarre, Y. Algebraical 
summation in synaptic activation of motoneurones 
firing within the ‘primary range’ to injected currents. 
J. Physiol. 187, 379–399 (1966).

29. Ma, W. J., Beck, J. M., Latham, P. E. & Pouget, A. 
Bayesian inference with probabilistic population 
codes. Nature Neurosci. 9, 1432–1438 (2006).

30. Yang, T. & Shadlen, M. N. Probabilistic reasoning by 
neurons. Nature 447, 1075–1080 (2007).

31. Brenner, N., Bialek, W. & de Ruyter van Steveninck, R. 
Adaptive rescaling maximizes information 
transmission. Neuron 26, 695–702 (2000).

32. Andersen, R. A., Essick, G. K. & Siegel, R. M. Encoding 
of spatial location by posterior parietal neurons. 
Science 230, 456–458 (1985).

33. Andersen, R. A. & Mountcastle, V. B. The influence of 
the angle of gaze upon the excitability of the light-
sensitive neurons of the posterior parietal cortex. 
J. Neurosci. 3, 532–548 (1983).

34. Brotchie, P. R., Andersen, R. A., Snyder, L. H. & 
Goodman, S. J. Head position signals used by parietal 
neurons to encode locations of visual stimuli. Nature 
375, 232–235 (1995).

35. Salinas, E. & Abbott, L. F. Transfer of coded 
information from sensory to motor networks. 
J. Neurosci. 15, 6461–6474 (1995).

36. Pouget, A. & Sejnowski, T. J. Spatial transformations 
in the parietal cortex using basis functions. J. Cogn. 
Neurosci. 9, 222–237 (1997).

37. Zipser, D. & Andersen, R. A. A back-propagation 
programmed network that simulates response 
properties of a subset of posterior parietal neurons. 
Nature 331, 679–684 (1988).

38. Yakusheva, T. A. et al. Purkinje cells in posterior 
cerebellar vermis encode motion in an inertial 
reference frame. Neuron 54, 973–985 (2007).

39. McAdams, C. J. & Maunsell, J. H. Effects of attention 
on orientation-tuning functions of single neurons in 
macaque cortical area V4. J. Neurosci. 19, 431–441 
(1999).

40. Treue, S. & Martinez Trujillo, J. C. Feature-based 
attention influences motion processing gain in 
macaque visual cortex. Nature 399, 575–579 
(1999).

41. Tovee, M. J., Rolls, E. T. & Azzopardi, P. Translation 
invariance in the responses to faces of single neurons 
in the temporal visual cortical areas of the alert 
macaque. J. Neurophysiol. 72, 1049–1060 (1994).

42. Anderson, J. S., Lampl, I., Gillespie, D. C. & Ferster, D. 
The contribution of noise to contrast invariance of 
orientation tuning in cat visual cortex. Science 290, 
1968–1972 (2000).
An experimental study that highlighted the 
importance of noise in contrast invariance of 
orientation tuning and showed that it smoothed the 
relationship between output firing rate and 
membrane potential.

43. Ingham, N. J. & McAlpine, D. GABAergic inhibition 
controls neural gain in inferior colliculus neurons 
sensitive to interaural time differences. J. Neurosci. 
25, 6187–6198 (2005).

44. Engel, A. K., Fries, P. & Singer, W. Dynamic 
predictions: oscillations and synchrony in top-down 
processing. Nature Rev. Neurosci. 2, 704–716 
(2001).

45. Buzsaki, G. & Draguhn, A. Neuronal oscillations in 
cortical networks. Science 304, 1926–1929 (2004).

46. Haider, B. & McCormick, D. A. Rapid neocortical 
dynamics: cellular and network mechanisms. Neuron 
62, 171–189 (2009).

47. Rudolph, M. & Destexhe, A. Tuning neocortical 
pyramidal neurons between integrators and 
coincidence detectors. J. Comput. Neurosci. 14,  
239–251 (2003).

48. Azouz, R. Dynamic spatiotemporal synaptic 
integration in cortical neurons: neuronal gain, 
revisited. J. Neurophysiol. 94, 2785–2796 (2005).

49. Diesmann, M., Gewaltig, M. O. & Aertsen, A. Stable 
propagation of synchronous spiking in cortical neural 
networks. Nature 402, 529–533 (1999).

50. Marsalek, P., Koch, C. & Maunsell, J. On the 
relationship between synaptic input and spike output 
jitter in individual neurons. Proc. Natl Acad. Sci. USA 
94, 735–740 (1997).

51. Williams, S. R. Spatial compartmentalization and 
functional impact of conductance in pyramidal 
neurons. Nature Neurosci. 7, 961–967 (2004).

52. Koch, C., Douglas, R. & Wehmeier, U. Visibility of 
synaptically induced conductance changes: theory  
and simulations of anatomically characterized  
cortical pyramidal cells. J. Neurosci. 10, 1728–1744 
(1990).

53. Freund, T. F. & Katona, I. Perisomatic inhibition. 
Neuron 56, 33–42 (2007).

54. Borg-Graham, L. J., Monier, C. & Fregnac, Y. Visual 
input evokes transient and strong shunting inhibition 
in visual cortical neurons. Nature 393, 369–373 
(1998).

55. Fatt, P. & Katz, B. The effect of inhibitory nerve 
impulses on a crustacean muscle fibre. J. Physiol. 121, 
374–389 (1953).

56. Coombs, J. S., Eccles, J. C. & Fatt, P. The electrical 
properties of the motoneurone membrane. J. Physiol. 
130, 396–413 (1955).

57. Vu, E. T. & Krasne, F. B. Evidence for a computational 
distinction between proximal and distal neuronal 
inhibition. Science 255, 1710–1712 (1992).

58. Liu, G. Local structural balance and functional 
interaction of excitatory and inhibitory synapses in 
hippocampal dendrites. Nature Neurosci. 7, 373–379 
(2004).

59. Carandini, M. & Heeger, D. J. Summation and division 
by neurons in primate visual cortex. Science 264, 
1333–1336 (1994).

60. Nelson, M. L. A mechnism for neuronal gain control by 
decending pathways. Neural Comput. 6, 242–254 
(1994).

61. Gabbiani, F., Midtgaard, J. & Knöpfel, T. Synaptic 
integration in a model of cerebellar granule cells. 
J. Neurophysiol. 72, 999–1009 (1994).

62. Capaday, C. A re-examination of the possibility of 
controlling the firing rate gain of neurons by balancing 
excitatory and inhibitory conductances. Exp. Brain 
Res. 143, 67–77 (2002).

63. Sah, P. & Faber, E. S. Channels underlying neuronal 
calcium-activated potassium currents. Prog. 
Neurobiol. 66, 345–353 (2002).

64. Berman, N. J., Douglas, R. J. & Martin, K. A. GABA-
mediated inhibition in the neural networks of visual 
cortex. Prog. Brain Res. 90, 443–476 (1992).

65. Brickley, S. G., Cull-Candy, S. G. & Farrant, M. 
Development of a tonic form of synaptic inhibition in 
rat cerebellar granule cells resulting from persistent 
activation of GABAA receptors. J. Physiol. 497,  
753–759 (1996).

66. Chance, F., Abbott, L. & Reyes, A. Gain modulation 
from background synaptic input. Neuron 35,  
773–782 (2002).
An experimental study on pyramidal cells that 
showed that neuronal gain could be altered by 
changing the level of noise introduced by  
balanced excitatory and inhibitory background 
synaptic input.

67. Ulrich, D. Differential arithmetic of shunting  
inhibition for voltage and spike rate in neocortical 
pyramidal cells. Eur. J. Neurosci. 18, 2159–2165 
(2003).

68. Destexhe, A. & Pare, D. Impact of network activity on 
the integrative properties of neocortical pyramidal 
neurons in vivo. J. Neurophysiol. 81, 1531–1547 
(1999).

69. Destexhe, A., Rudolph, M. & Pare, D. The high-
conductance state of neocortical neurons in vivo. 
Nature Rev. Neurosci. 4, 739–751 (2003).

70. Ho, N. & Destexhe, A. Synaptic background activity 
enhances the responsiveness of neocortical  
pyramidal neurons. J. Neurophysiol. 84, 1488–1496 
(2000).
An early theoretical study that predicted that 
background synaptic input enhances the 
responsiveness of neocortical pyramidal neurons to 
coincident synaptic input.

71. Sargent, P. B., Saviane, C., Nielsen, T. A.,  
DiGregorio, D. A. & Silver, R. A. Rapid vesicular 
release, quantal variability, and spillover contribute to 
the precision and reliability of transmission at a 
glomerular synapse. J. Neurosci. 25, 8173–8187 
(2005).

72. Stacey, W. C. & Durand, D. M. Synaptic noise improves 
detection of subthreshold signals in hippocampal CA1 
neurons. J. Neurophysiol. 86, 1104–1112 (2001).

R E V I E W S

NATURe ReVIeWS | NeuroscieNce  VOlUMe 11 | jUly 2010 | 487

© 20  Macmillan Publishers Limited. All rights reserved10



73. Shu, Y., Hasenstaub, A., Badoual, M., Bal, T. & 
McCormick, D. A. Barrages of synaptic activity  
control the gain and sensitivity of cortical neurons. 
J. Neurosci. 23, 10388–10401 (2003).
A dynamic clamp study that showed that 
background noise controls the gain of the 
relationship between spike probability and 
excitatory conductance for coincident inputs,  
while voltage and conductance changes induce 
additive shifts. These effects are linked to up and 
down states.

74. Wolfart, J., Debay, D., Le Masson, G., Destexhe, A. & 
Bal, T. Synaptic background activity controls spike 
transfer from thalamus to cortex. Nature Neurosci. 8, 
1760–1767 (2005).

75. Fellous, J. M., Rudolph, M., Destexhe, A. & Sejnowski, 
T. J. Synaptic background noise controls the input/
output characteristics of single cells in an in vitro 
model of in vivo activity. Neuroscience 122, 811–829 
(2003).

76. Destexhe, A., Rudolph, M., Fellous, J. M. & Sejnowski, 
T. J. Fluctuating synaptic conductances recreate 
in vivo-like activity in neocortical neurons. 
Neuroscience 107, 13–24 (2001).

77. Doiron, B., Longtin, A., Berman, N. & Maler, L. 
Subtractive and divisive inhibition: effect of voltage-
dependent inhibitory conductances and noise. Neural 
Comput. 13, 227–248 (2001).

78. Tiesinga, P. H., Jose, J. V. & Sejnowski, T. J. 
Comparison of current-driven and conductance-driven 
neocortical model neurons with Hodgkin–Huxley 
voltage-gated channels. Phys. Rev. E Stat. Phys. 
Plasmas Fluids Relat. Interdiscip. Topics 62,  
8413–8419 (2000).
An early theoretical study that predicted that 
increasing the noise of the input conductance will 
reduce the gain of neurons during sustained firing.

79. Prescott, S. A. & De Koninck, Y. Gain control of firing 
rate by shunting inhibition: roles of synaptic noise and 
dendritic saturation. Proc. Natl Acad. Sci. USA 100, 
2076–2081 (2003).

80. Higgs, M. H., Slee, S. J. & Spain, W. J. Diversity of gain 
modulation by noise in neocortical neurons: regulation 
by the slow afterhyperpolarization conductance. 
J. Neurosci. 26, 8787–8799 (2006).

81. Hansel, D. & van Vreeswijk, C. How noise contributes 
to contrast invariance of orientation tuning in cat 
visual cortex. J. Neurosci. 22, 5118–5128 (2002).

82. Miller, K. D. & Troyer, T. W. Neural noise can explain 
expansive, power-law nonlinearities in neural  
response functions. J. Neurophysiol. 87, 653–659 
(2002).

83. Okun, M. & Lampl, I. Instantaneous correlation of 
excitation and inhibition during ongoing and sensory-
evoked activities. Nature Neurosci. 11, 535–537 
(2008).

84. Galarreta, M. & Hestrin, S. Frequency-dependent 
synaptic depression and the balance of excitation and 
inhibition in the neocortex. Nature Neurosci. 1,  
587–594 (1998).

85. Shadlen, M. N. & Newsome, W. T. Noise, neural codes 
and cortical organization. Curr. Opin. Neurobiol. 4, 
569–579 (1994).

86. Kerr, A. M. & Capogna, M. Unitary IPSPs enhance 
hilar mossy cell gain in the rat hippocampus. 
J. Physiol. 578, 451–470 (2007).

87. Pavlov, I., Savtchenko, L. P., Kullmann, D. M., 
Semyanov, A. & Walker, M. C. Outwardly rectifying 
tonically active GABAA receptors in pyramidal cells 
modulate neuronal offset, not gain. J. Neurosci. 29, 
15341–15350 (2009).

88. Longtin, A., Doiron, B. & Bulsara, A. R. Noise-induced 
divisive gain control in neuron models. BioSystems 
67, 147–156 (2002).

89. Silver, R. A., Traynelis, S. F. & Cull-Candy, S. G. 
Rapid-time-course miniature and evoked excitatory 
currents at cerebellar synapses in situ. Nature 355, 
163–166 (1992).

90. Cathala, L., Brickley, S., Cull-Candy, S. & Farrant, M. 
Maturation of EPSCs and intrinsic membrane 
properties enhances precision at a cerebellar synapse. 
J. Neurosci. 23, 6074–6085 (2003).

91. Rice, S. O. in Selected Papers on Noise and Stochastic 
Processes (ed. Wax, N.) 113–150 (Dover, New York, 
1954).

92. Ayaz, A. & Chance, F. S. Gain modulation of neuronal 
responses by subtractive and divisive mechanisms of 
inhibition. J. Neurophysiol. 101, 958–968 (2009).

93. Murphy, B. K. & Miller, K. D. Multiplicative gain 
changes are induced by excitation or inhibition alone. 
J. Neurosci. 23, 10040–10051 (2003).

94. Finn, I. M., Priebe, N. J. & Ferster, D. The emergence 
of contrast-invariant orientation tuning in simple cells 
of cat visual cortex. Neuron 54, 137–152 (2007).

95. Carandini, M. Melting the iceberg: contrast  
invariance in visual cortex. Neuron 54, 11–13  
(2007).

96. Banitt, Y., Martin, K. A. & Segev, I. A biologically 
realistic model of contrast invariant orientation tuning 
by thalamocortical synaptic depression. J. Neurosci. 
27, 10230–10239 (2007).

97. Cardin, J. A., Palmer, L. A. & Contreras, D. Cellular 
mechanisms underlying stimulus-dependent gain 
modulation in primary visual cortex neurons in vivo. 
Neuron 59, 150–160 (2008).
An in vivo study of neural gain that involved 
intracellular recordings from single neurons in 
primary visual cortex. Stimuli that evoked 
sustained changes in the resting membrane 
potential, input resistance and membrane 
fluctuations modulated the gain of the firing 
rate–current relationship.

98. Gabbiani, F., Krapp, H. G., Koch, C. & Laurent, G. 
Multiplicative computation in a visual neuron sensitive 
to looming. Nature 420, 320–324 (2002).

99. Dittman, J. S., Kreitzer, A. C. & Regehr, W. G. Interplay 
between facilitation, depression, and residual calcium 
at three presynaptic terminals. J. Neurosci. 20, 
1374–1385 (2000).

100. Eccles, J. C., Katz, B. & Kuffler, S. W. Nature of the 
‘endplate potential’ in curarized muscle. 
J. Neurophysiol. 4, 362–387 (1941).

101. Feng, T. P. The changes in the end-plate potential 
during and after prolonged stimulation. Chin. 
J. Physiol. 16, 341–372 (1941).

102. Betz, W. J. Depression of transmitter release at the 
neuromuscular junction of the frog. J. Physiol. 206, 
629–644 (1970).

103. Elmqvist, D. & Quastel, D. M. A quantitative study of 
end-plate potentials in isolated human muscle. 
J. Physiol. 178, 505–529 (1965).

104. Saviane, C. & Silver, R. A. Fast vesicle reloading and a 
large pool sustain high bandwidth transmission at a 
central synapse. Nature 439, 983–987 (2006).

105. Trussell, L. O. & Fischbach, G. D. Glutamate receptor 
desensitization and its role in synaptic transmission. 
Neuron 3, 209–218 (1989).

106. Abbott, L. F. & Regehr, W. G. Synaptic computation. 
Nature 431, 796–803 (2004).

107. Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. 
Synaptic depression and cortical gain control. Science 
275, 220–224 (1997).

108. Tsodyks, M. V. & Markram, H. The neural code 
between neocortical pyramidal neurons depends on 
neurotransmitter release probability. Proc. Natl Acad. 
Sci. USA 94, 719–723 (1997); erratum in 94, 5495 
(1997).

109. Carandini, M., Heeger, D. J. & Senn, W. A synaptic 
explanation of suppression in visual cortex. 
J. Neurosci. 22, 10053–10065 (2002).

110. Rothman, J. S., Cathala, L., Steuber, V. & Silver, R. A. 
Synaptic depression enables neuronal gain control. 
Nature 457, 1015–1018 (2009).
A combined experimental and theoretical study 
showing that short-term synaptic depression in the 
excitatory input can convert inhibition-mediated 
additive shifts in the I–O relationship into 
multiplicative gain changes.

111. Rancz, E. A. et al. High-fidelity transmission of sensory 
information by single cerebellar mossy fibre boutons. 
Nature 450, 1245–1248 (2007).

112. Cash, S. & Yuste, R. Linear summation of excitatory 
inputs by CA1 pyramidal neurons. Neuron 22,  
383–394 (1999).

113. Cash, S. & Yuste, R. Input summation by cultured 
pyramidal neurons is linear and position-independent. 
J. Neurosci. 18, 10–15 (1998).

114. Tamas, G., Szabadics, J. & Somogyi, P. Cell type- and 
subcellular position-dependent summation of unitary 
postsynaptic potentials in neocortical neurons. 
J. Neurosci. 22, 740–747 (2002).

115. Bernander, Ö., Koch, C. & Douglas, R. J. Amplification 
and linearization of distal synaptic input to cortical 
pyramidal cells. J. Neurophysiol. 72, 2743–2753 
(1994).

116. Gasparini, S. & Magee, J. C. State-dependent 
dendritic computation in hippocampal CA1  
pyramidal neurons. J. Neurosci. 26, 2088–2100 
(2006).

117. Williams, S. R. & Stuart, G. J. Dependence of EPSP 
efficacy on synapse location in neocortical pyramidal 
neurons. Science 295, 1907–1910 (2002).

An experimental study of neocortical pyramidal 
cells showing spatial dependence of synaptic 
efficacy and that synaptic inputs on the distal 
dendrites have a much narrower time-window for 
integration than those at the soma.

118. Williams, S. R. & Atkinson, S. E. Pathway-specific use-
dependent dynamics of excitatory synaptic 
transmission in rat intracortical circuits. J. Physiol. 
585, 759–777 (2007).

119. Markram, H. & Tsodyks, M. Redistribution of synaptic 
efficacy between neocortical pyramidal neurons. 
Nature 382, 807–810 (1996).

120. Sjostrom, P. J., Turrigiano, G. G. & Nelson, S. B. 
Neocortical LTD via coincident activation of 
presynaptic NMDA and cannabinoid receptors. 
Neuron 39, 641–654 (2003).

121. London, M. & Hausser, M. Dendritic computation. 
Annu. Rev. Neurosci. 28, 503–532 (2005).

122. Mel, B. in Dendrites (eds Stuart, G. J., Spruston, N. & 
Hausser, M.) 271–284 (Oxford Univ. Press, 2008).

123. Larkum, M. E. & Nevian, T. Synaptic clustering by 
dendritic signalling mechanisms. Curr. Opin. 
Neurobiol. 18, 321–331 (2008).

124. Spruston, N. Pyramidal neurons: dendritic structure 
and synaptic integration. Nature Rev. Neurosci. 9, 
206–221 (2008).

125. Sjöström, P. J., Rancz, E. A., Roth, A. & Häusser, M. 
Dendritic excitability and synaptic plasticity. Physiol. 
Rev. 88, 769–840 (2008).

126. Stuart, G., Spruston, N. & Häusser, M. (eds). 
Dendrites (Oxford Univ. Press, Oxford, 2008).

127. Nevian, T., Larkum, M. E., Polsky, A. & Schiller, J. 
Properties of basal dendrites of layer 5 pyramidal 
neurons: a direct patch-clamp recording study. Nature 
Neurosci. 10, 206–214 (2007).

128. Hoffman, D. A., Magee, J. C., Colbert, C. M. & 
Johnston, D. K+ channel regulation of signal 
propagation in dendrites of hippocampal pyramidal 
neurons. Nature 387, 869–875 (1997).

129. Golding, N. L. & Spruston, N. Dendritic sodium spikes 
are variable triggers of axonal action potentials in 
hippocampal CA1 pyramidal neurons. Neuron 21, 
1189–1200 (1998).

130. Araya, R., Eisenthal, K. B. & Yuste, R. Dendritic spines 
linearize the summation of excitatory potentials.  
Proc. Natl Acad. Sci. USA 103, 18799–18804 
(2006).

131. Araya, R., Jiang, J., Eisenthal, K. B. & Yuste, R. The 
spine neck filters membrane potentials. Proc. Natl 
Acad. Sci. USA 103, 17961–17966 (2006).

132. Palmer, L. M. & Stuart, G. J. Membrane potential 
changes in dendritic spines during action potentials 
and synaptic input. J. Neurosci. 29, 6897–6903 
(2009).

133. Capaday, C. & van Vreeswijk, C. Direct control of firing 
rate gain by dendritic shunting inhibition. J. Integr. 
Neurosci. 5, 199–222 (2006).

134. Spruston, N., Jaffe, D. B., Williams, S. H. & Johnston, 
D. Voltage- and space-clamp errors associated with 
the measurement of electrotonically remote synaptic 
events. J. Neurophysiol. 70, 781–802 (1993).

135. Oviedo, H. & Reyes, A. D. Boosting of neuronal  
firing evoked with asynchronous and synchronous 
inputs to the dendrite. Nature Neurosci. 5, 261–266 
(2002).

136. Larkum, M. E., Nevian, T., Sandler, M., Polsky, A. & 
Schiller, J. Synaptic integration in tuft dendrites of 
layer 5 pyramidal neurons: a new unifying principle. 
Science 325, 756–760 (2009).
An experimental study that unifies previous work 
by the same authors by showing that synaptic 
integration occurs in the thin basal and apical 
dendrites of L5 pyramidal cells through NMDA 
receptors. These local nonlinear integration sites 
can trigger either a regenerative Ca2+ spike in the 
main dendrite or a sodium spike at the soma.

137. Schwindt, P. C. & Crill, W. E. Amplification of synaptic 
current by persistent sodium conductance in apical 
dendrite of neocortical neurons. J. Neurophysiol. 74, 
2220–2224 (1995).

138. Oviedo, H. & Reyes, A. D. Variation of input–output 
properties along the somatodendritic axis of 
pyramidal neurons. J. Neurosci. 25, 4985–4995 
(2005).

139. Cook, E. P. & Johnston, D. Voltage-dependent 
properties of dendrites that eliminate location-
dependent variability of synaptic input. 
J. Neurophysiol. 81, 535–543 (1999).

140. Schwindt, P. C. & Crill, W. E. Synaptically evoked 
dendritic action potentials in rat neocortical pyramidal 
neurons. J. Neurophysiol. 79, 2432–2446 (1998).

R E V I E W S

488 | jUly 2010 | VOlUMe 11  www.nature.com/reviews/neuro

© 20  Macmillan Publishers Limited. All rights reserved10



141. Larkum, M. E., Zhu, J. J. & Sakmann, B. A new cellular 
mechanism for coupling inputs arriving at different 
cortical layers. Nature 398, 338–341 (1999).

142. Wei, D. S. et al. Compartmentalized and binary 
behavior of terminal dendrites in hippocampal 
pyramidal neurons. Science 293, 2272–2275 (2001).

143. Larkum, M. E., Senn, W. & Luscher, H. R. Top-down 
dendritic input increases the gain of layer 5 pyramidal 
neurons. Cereb. Cortex 14, 1059–1070 (2004).

144. Vervaeke, K., Hu, H., Graham, L. J. & Storm, J. F. 
Contrasting effects of the persistent Na+ current on 
neuronal excitability and spike timing. Neuron 49, 
257–270 (2006).

145. Mehaffey, W. H., Doiron, B., Maler, L. & Turner, R. W. 
Deterministic multiplicative gain control with active 
dendrites. J. Neurosci. 25, 9968–9977 (2005).
This experimental and theoretical study shows how 
Na+ channels on pyramidal cell dendrites in electric 
fish confer spatial dependence to the arithmetic 
operations performed by inhibition during 
sustained firing.

146. Smith, M. R., Nelson, A. B. & Du Lac, S. Regulation of 
firing response gain by calcium-dependent 
mechanisms in vestibular nucleus neurons. 
J. Neurophysiol. 87, 2031–2042 (2002).

147. Stuart, G., Schiller, J. & Sakmann, B. Action potential 
initiation and propagation in rat neocortical pyramidal 
neurons. J. Physiol. 505, 617–632 (1997).

148. Turner, R. W., Meyers, D. E. & Barker, J. L. Localization 
of tetrodotoxin-sensitive field potentials of CA1 
pyramidal cells in the rat hippocampus. 
J. Neurophysiol. 62, 1375–1387 (1989).

149. Losonczy, A., Makara, J. K. & Magee, J. C. 
Compartmentalized dendritic plasticity and input 
feature storage in neurons. Nature 452, 436–441 
(2008).

150. Gasparini, S., Migliore, M. & Magee, J. C. On the 
initiation and propagation of dendritic spikes in CA1 
pyramidal neurons. J. Neurosci. 24, 11046–11056 
(2004).

151. Losonczy, A. & Magee, J. C. Integrative properties of 
radial oblique dendrites in hippocampal CA1 
pyramidal neurons. Neuron 50, 291–307 (2006).
An experimental study that used glutamate 
uncaging to show that coincident input onto radial 
oblique dendrites of CA1 pyramidal cells can 
trigger a local supralinear Na+ spike, suggesting 
that these dendritic compartments can operate as 
independent computational units.

152. Remy, S., Csicsvari, J. & Beck, H. Activity-dependent 
control of neuronal output by local and global 
dendritic spike attenuation. Neuron 61, 906–916 
(2009).

153. Ariav, G., Polsky, A. & Schiller, J. Submillisecond 
precision of the input-output transformation function 
mediated by fast sodium dendritic spikes in basal 
dendrites of CA1 pyramidal neurons. J. Neurosci. 23, 
7750–7758 (2003).

154. Softky, W. Sub-millisecond coincidence detection in 
active dendritic trees. Neuroscience 58, 13–41 
(1994).

155. Poirazi, P. & Mel, B. W. Impact of active dendrites and 
structural plasticity on the memory capacity of neural 
tissue. Neuron 29, 779–796 (2001).

156. Polsky, A., Mel, B. W. & Schiller, J. Computational 
subunits in thin dendrites of pyramidal cells. Nature 
Neurosci. 7, 621–627 (2004).

157. Poirazi, P., Brannon, T. & Mel, B. W. Pyramidal neuron 
as two-layer neural network. Neuron 37, 989–999 
(2003).
This theoretical study proposes the idea that local 
nonlinear dendritic integration enables an 
individual pyramidal cell to behave like a two-layer 
network, thereby substantially enhancing its 
computational power.

158. Nowak, L. P., Bregestovski, P., Ascher, P., Herbert, A. 
& Prochiantz, A. Magnesium gates glutamate-
activated channels in mouse central neurones. Nature 
307, 462–465 (1984).

159. Schiller, J., Major, G., Koester, H. J. & Schiller, Y. 
NMDA spikes in basal dendrites of cortical pyramidal 
neurons. Nature 404, 285–289 (2000).

160. Major, G., Polsky, A., Denk, W., Schiller, J. & Tank, 
D. W. Spatiotemporally graded NMDA spike/plateau 
potentials in basal dendrites of neocortical  
pyramidal neurons. J. Neurophysiol. 99, 2584–2601 
(2008).

161. Rhodes, P. The properties and implications of NMDA 
spikes in neocortical pyramidal cells. J. Neurosci. 26, 
6704–6715 (2006).

162. Theunissen, F. E. From synchrony to sparseness. 
Trends Neurosci. 26, 61–64 (2003).

163. Jia, H., Rochefort, N. L., Chen, X. & Konnerth, A. 
Dendritic organization of sensory input to cortical 
neurons in vivo. Nature 464, 1307–1312 (2010).

164. Rancz, E. A. & Hausser, M. Dendritic calcium spikes 
are tunable triggers of cannabinoid release and short-
term synaptic plasticity in cerebellar Purkinje neurons. 
J. Neurosci. 26, 5428–5437 (2006).

165. Bollmann, J. H. & Engert, F. Subcellular topography of 
visually driven dendritic activity in the vertebrate 
visual system. Neuron 61, 895–905 (2009).

166. Waters, J., Larkum, M., Sakmann, B. & Helmchen, F. 
Supralinear Ca2+ influx into dendritic tufts of layer 2/3 
neocortical pyramidal neurons in vitro and in vivo. 
J. Neurosci. 23, 8558–8567 (2003).

167. Chklovskii, D. B., Mel, B. W. & Svoboda, K. Cortical 
rewiring and information storage. Nature 431,  
782–788 (2004).

168. Pocock, G. & Richards, C. D. Excitatory and inhibitory 
synaptic mechanisms in anaesthesia. Br. J. Anaesth. 
71, 134–147 (1993).

169. Lee, A. K., Manns, I. D., Sakmann, B. & Brecht, M. 
Whole-cell recordings in freely moving rats. Neuron 
51, 399–407 (2006).

170. Dombeck, D. A., Khabbaz, A. N., Collman, F., 
Adelman, T. L. & Tank, D. W. Imaging large-scale 
neural activity with cellular resolution in awake, mobile 
mice. Neuron 56, 43–57 (2007).

171. Wickersham, I. R. et al. Monosynaptic restriction of 
transsynaptic tracing from single, genetically targeted 
neurons. Neuron 53, 639–647 (2007).

172. Gleeson, P., Steuber, V. & Silver, R. A. neuroConstruct: 
a tool for modeling networks of neurons in 3D space. 
Neuron 54, 219–235 (2007).

173. Harsch, A. & Robinson, H. P. Postsynaptic variability 
of firing in rat cortical neurons: the roles of input 
synchronization and synaptic NMDA receptor 
conductance. J. Neurosci. 20, 6181–6192 (2000).

174. Fino, E. et al. RuBi-glutamate: two-photon and visible-
light photoactivation of neurons and dendritic spines. 
Front. Neural Circuits 3, 2 (2009).

175. Kiskin, N. I., Chillingworth, R., McCray, J. A.,  
Piston, D. & Ogden, D. The efficiency of two-photon 
photolysis of a ‘caged’ fluorophore, o-1-(2-nitrophenyl)
ethylpyranine, in relation to photodamage of synaptic 
terminals. Eur. Biophys. J. 30, 588–604 (2002).

176. Kantevari, S., Matsuzaki, M., Kanemoto, Y., Kasai, H. 
& Ellis-Davies, G. C. Two-color, two-photon uncaging of 
glutamate and GABA. Nature Methods 7, 123–125 
(2010).

177. Zhang, F., Aravanis, A. M., Adamantidis, A.,  
de Lecea, L. & Deisseroth, K. Circuit-breakers:  
optical technologies for probing neural signals and 
systems. Nature Rev. Neurosci. 8, 577–581 (2007).

178. Kole, M. H. et al. Action potential generation requires 
a high sodium channel density in the axon initial 
segment. Nature Neurosci. 11, 178–186 (2008).

179. Hines, M. L. & Carnevale, N. T. The NEURON simulation 
environment. Neural Comput. 9, 1179–1209 (1997).

Acknowledgements
I would like to thank D. Attwell, G. Billings, T. Branco,  
M. Carandini, E. Chaigneau, T. Fernandez-Alfonso, M. Farrant, 
T. Margrie, A. Roth, J. Rothman, D. Ruedt, J. Sjöström,  
V. Steuber, K. Vervaeke and D. Ward for comments on the 
manuscript and J. Rothman and M. Farinella for help with pre-
paring figures. This work was funded by the Medical Research 
Council, the Biotechnology and Biological Sciences  
Research Council, and the Wellcome Trust. R.A.S. holds a 
Wellcome Trust senior research fellowship in basic 
biomedical science.

Competing interests statement
The author declares no competing financial interests. 

FURTHER INFORMATION
Author’s UCL homepage http://ucl.ac.uk/npp/as.html
ModelDB: http://senselab.med.yale.edu/ModelDb
neuroConstruct: http://www.NeuroConstruct.org
Neuromatic (electrophysiology acquisition and analysis 
software): http://www.neuromatic.thinkrandom.com
NeuroML (simulator independent language for defining 
biologically detailed neuronal and network models):  
http://www.NeuroML.org
NEURON simulation environment:  
http://www.neuron.yale.edu

SUPPLEMENTARY INFORMATION
See online article: S1 (box)

All liNks Are AcTive iN The oNliNe pdf

R E V I E W S

NATURe ReVIeWS | NeuroscieNce  VOlUMe 11 | jUly 2010 | 489

© 20  Macmillan Publishers Limited. All rights reserved10

http://ucl.ac.uk/npp/as.html
http://senselab.med.yale.edu/ModelDb
http://www.NeuroConstruct.org
http://www.neuromatic.thinkrandom.com
http://www.NeuroML.org
http://www.neuron.yale.edu
http://www.nature.com/nrn/journal/v11/n7/suppinfo/nrn2864.html

	Encoding information with action potentials
	Abstract | The vast computational power of the brain has traditionally been viewed as arising from the complex connectivity of neural networks, in which an individual neuron acts as a simple linear summation and thresholding device. However, recent studies show that individual neurons utilize a wealth of nonlinear mechanisms to transform synaptic input into output firing. These mechanisms can arise from synaptic plasticity, synaptic noise, and somatic and dendritic conductances. This tool kit of nonlinear mechanisms confers considerable computational power on both morphologically simple and more complex neurons, enabling them to perform a range of arithmetic operations on signals encoded in a variety of different ways.
	Figure 1 | The rate-coded neuronal input–output relationship and possible arithmetic operations performed by modulatory inputs. a | For rate-coded neuronal signalling, a driving input typically consists of asynchronous excitatory synaptic input from multiple presynaptic neurons firing in a sustained manner (shown in red). A neuron may also receive a modulatory input, such as inhibition (shown in green), that alters the way the neuron transforms its synaptic input into output firing rate (shown in blue). b | The input–output (I–O) relationship between the total (or mean) driving input rate (d) and the response that is represented by the output firing rate (R). The arrow indicates the rheobase (minimum synaptic input that generates an action potential). c | Rate-coded I–O relationships can be altered by changing the strength of the modulatory input (m), which may be mediated by a different inhibitory or excitatory input. If this shifts the I–O relationship along the x‑axis to the right or left, changing the rheobase but not the shape of the curve, an additive operation has been performed on the input (shown by orange curves). This input modulation is often referred to as linear integration because the synaptic inputs are being summed. d | An additive operation can also be performed on output firing. In this case a modulatory input shifts the I–O relationship up or down along the y‑axis (shown by orange curves). e,f | If the driving and modulatory inputs are multiplied together by the neuron, changing the strength of a modulatory input will change the slope, or gain, of the I–O relationship without changing the rheobase. A multiplicative operation can produce a scaling of the I–O relationship along either the x‑axis (input modulation; e) or the y-axis (output modulation; f). Although both of these modulations change the gain of the I–O relationship, only output gain modulation scales the neuronal dynamic range (f).
	Algebraic transformation of I–O relationships
	Role of arithmetic operations in vivo
	Figure 2 | Neuronal arithmetic during sparse coding. a | Sparse coding relies on coincident synaptic input within a brief time-window (Δt) during which the inputs are integrated and potentially drive the cell to cross the action potential threshold. b | Spike probability versus the number of coincident driving inputs (Pspike–Nexc) is the simplest way to quantify the neuron’s input–output (I– O) relationship under these conditions. c | Background synaptic noise is important in determining the shape of the Pspike–Nexc relationship73,76 because it determines the width of the membrane voltage distribution. The simulation shows a simple integrate-and-fire cell with background voltage noise, driven with a synchronous synaptic input (top part). Shifting the voltage distribution without changing its shape by adding a hyperpolarizing current introduces a subtractive shift in the Pspike–Nexc relationship (bottom part; shift from black to orange traces). By contrast, decreasing the voltage noise increases the gain of the I–O relationship (shift from black to green traces). d | The relationship between Pspike and driving inputs can also be defined in the temporal domain. In this case, the temporal correlation in the driving inputs is defined as the standard deviation of input spike times (σinput)48,50. Altering the level of noise changes the gain of the Pspike– σinput relationship47,48. e | Changing the input resistance by altering a shunting conductance tends to shift the Pspike– σinput relationship48. This is due to scaling of the excitatory postsynaptic potential (EPSP) and voltage noise, together with altered summation of temporally dispersed inputs, as a result of changes in membrane time constant and thus EPSP shape (FIG. 3a). Parts d and e are modified, with permission, from Ref. 48 © (2005) The American Physiological Society.
	Figure 3 | Subthreshold effects of shunting conductance and its effect on the input–output relationship of a cerebellar granule cell in the absence of noise. The effect of shunting inhibition on cerebellar granule cells (CGCs) was investigated in acute cerebellar slices using the dynamic clamp technique. a | An excitatory postsynaptic potential (EPSP) evoked by an AMPAR (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor) synaptic conductance waveform (reversal potential 0 mV) that was injected during control conditions (shown in black) and during application of a 1 nanosiemens (nS) tonic shunting inhibitory conductance (reversal potential –75 mV). This inhibitory conductance scaled down the amplitude of the EPSP, consistent with Ohm’s law, and accelerated the decay of the EPSP as a result of a reduction in the membrane time constant (shown in green). b | CGC firing responses to a noise-free excitatory conductance step (Gexc, shown in red). The upper traces show the voltage responses to Gexc under control conditions (shown in black) and during injection of an inhibitory conductance (shown in orange). c | The relationship between mean firing rate of a CGC and step excitatory conductance in the presence and absence (control) of an inhibitory conductance. The inhibitory conductance produced a purely subtractive input modulation (x-axis shift; FIG. 1c) in the neuronal input–output relationship. d | The relationship between current flow through the tonic inhibitory conductance and the driving excitatory conductance, for subthreshold voltages (+) and during spiking (Δ). The inhibitory current depends on the excitatory conductance as the subthreshold voltage depolarizes, as expected for a conductance. However, during sustained firing the shunting inhibitory conductance behaves like a constant current source22. This explains why shunting inhibition has a multiplicative effect on subthreshold inputs but has an additive effect during sustained firing under low noise conditions. Figure is modified, with permission, from Ref. 23 © (2003) Elsevier.
	Mechanisms underlying arithmetic operations
	Figure 4 | Synaptic voltage noise and gain modulation of the rate-coded input–output relationship. a | Schematic setup for intracellular voltage recordings from a neocortical pyramidal neuron in a cat under anaesthesia. The intracellular voltage is characterized by a high level of noise in each recording period. Blocking synaptic input with local injection of tetrodotoxin (TTX), eliminated the voltage noise and increased the input resistance of the cell (see the voltage response to a current step of 0.1 nanoamperes (nA)). b | Blocking synaptic input with TTX reduces the variance of the intracellular voltage distribution in pyramidal neurons and demonstrates that some cortical cells operate under conditions of high levels of synaptically induced voltage noise (active) in vivo. c | The effect of noise on the relationship between firing rate and current (F–I) for a cortical interneuron, recorded in an acute slice preparation. As the noise increases (σ indicates standard deviation of the voltage noise in mV), the foot of the F–I relationship becomes more pronounced, reducing the gain of the relationship and producing a more sigmoid shape. d | The dynamic clamp configuration used to inject balanced excitatory (gE) and inhibitory (gI) synaptic conductance trains (resulting in zero net excitatory drive) into neocortical pyramidal cells, mimicking background synaptic input (noise) in the acute slice. Current steps were used as driving inputs to assay the neuronal responsiveness. Isyn is the synaptic current and EE and EI are the excitatory and inhibitory reversal potentials, respectively. e | The relationship between firing rate and the amplitude of the driving current steps for different levels of synaptic conductance noise (multiples of X, a balance of excitatory (rate = 7,000 Hz) and inhibitory synaptic inputs (rate = 3,000 Hz)). As the level of noise increases the gain of the F–I relationship was modified in a divisive manner. Part a is modified, with permission, from Nature Reviews Neuroscience Ref. 69 © (2003) Macmillan Publishers Ltd. All rights reserved. Part b is modified, with permission, from REF. 68 © (1999) The American Physiological Society. Part c is modified, with permission, from Ref. 80 © (2006) Society for Neuroscience. Parts d and e are modified, with permission, from REF. 66 © (2002) Elsevier.
	The role of changes in noise and conductance
	Figure 5 | Inhibition-mediated gain modulation with noisy rate-coded synaptic input in cerebellar granule cells. The effect of shunting inhibition on the rate coded input-output (I–O) relationship of cerebellar granule cells (CGCs) driven with random trains of noisy, synaptic-like conductances in the acute cerebellar slice preparation using the dynamic clamp technique. a | A CGC was excited by four summed Poisson trains of AMPAR (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor) synaptic conductances (Gexc) with a reversal potential of 0 mV under control conditions and during a 1 nanosiemens (nS) constant (tonic) inhibitory conductance. The resulting relationships between CGC firing rate and the mean excitation rate are shown in b. b | Application of the tonic inhibitory conductance reduced the slope of the I–O relationship (divisive operation, shown in green) and introduced an additive offset (subtractive operation, shown in orange). c | The relationship between the variance of random trains of synaptic conductances with constant amplitude and the total excitation rate (shown by grey circles). The variance increases with rate as predicted by Campbell’s theorem. σ2 is the conductance variance, ν is the total synaptic rate, and G(t) is the time course of the synaptic conductance waveform. d | The relationship between firing rate and mean voltage for control and during 1 nS tonic inhibition. In the presence of noise, this relationship is approximated by a power law, which when combined with conductance changes can perform a crude form of multiplication81 (shown by solid green and grey lines). In contrast to the noise-free case (FIG. 3), a shunting inhibitory conductance has a multiplicative effect on the rate-coded input–output relationship owing to synaptic inputs exhibiting an excitation-dependent variance. Parts a, b and d are reproduced, with permission, from Ref. 23 © (2003) Elesvier. 
	Synaptic depression and gain modulation
	The role of dendrites in neuronal arithmetic
	Figure 6 | Short-term synaptic depression converts inhibition-mediated additive shifts in the rate-coded input–output relationship into multiplicative gain changes in morphologically simple and complex cells. a | A morphologically simple cerebellar granule cell (CGC) with AMPAR (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor)-mediated synaptic conductance trains showing short-term depression (+STD; shown by blue traces) measured by stimulating mossy fibres at two frequencies. Artificial synaptic conductance trains without STD were also constructed (–STD; shown by red traces). Dashed lines show the time averaged conductance (Gexc) with and without STD. b | The relationship between CGC firing rate and Gexc obtained with the dynamic clamp technique. Depressing and non-depressing synaptic conductance trains produced similar CGC firing rates in control conditions and during a 0.5 nanosiemens (nS) constant (tonic) inhibitory conductance, indicating that they are integrated in a similar manner. Lines are fits to Hill-type functions (Supplementary information S1 (box)) and error bars show the standard error of the mean. c | The relationship between Gexc and mean input rate across four inputs with and without STD. Without STD the relationship is linear, as expected for summing identical waveforms. STD introduces a nonlinear saturating exponential function between input rate and Gexc. d | CGC input–output (I–O) relationships with and without STD and their modulation by a 0.5 nS tonic inhibitory conductance. STD in the driving input (c) amplifies the gain change observed with tonic inhibition by transforming the additive component into a multiplicative scaling. e | A morphologically complex layer 5 pyramidal neuron model178. The model shows random locations of excitatory synapses (shown by red circles) and inhibitory synapses (shown by green circles) distributed over the basolateral dendritic tree110, and spiking is shown below. This simulation was built with neuroConstruct172 and run on the NEURON simulator179. f | A conductance train and the I–O relationship for non-depressing excitatory synaptic input (–STD) for control conditions (shown by red squares) and for various rates of synaptic inhibition (shown by yellow squares). Synaptic inhibition introduced an additive shift along the driving axis consistent with linear integration. g | Same as f but including STD in the excitatory synaptic inputs (+STD alone, shown by dark blue circles; +STD and inhibition, shown by grey circles). STD changed the effects of inhibition from largely additive (f) to a largely multiplicative operation (g). Scaling down of the I–O relationship indicates an output gain modulation (FIG. 1f). Synaptic conductance waveforms and STD used in the simulation were matched to experimental data for layer 5 synaptic connections110. Part a is modified, with permission, from Ref. 90 © (2003) Society for Neuroscience. Parts b–g are modified, with permission, from Nature Ref. 110 © (2009) Macmillan Publishers Ltd. All rights reserved. 
	Figure 7 | Clustered synaptic input activates local dendritic nonlinearities which could form the basis of branch specific computation. a | Cartoons showing layer 5 cortical pyramidal cells with the location of activated synaptic inputs and the recording electrode. ‘Within branch’ refers to two inputs (A and B) that synapse onto the same dendritic branch (left), and ‘between branches’ corresponds to two inputs that synapse onto different branches (right). Traces show the somatic responses to a paired-pulse synaptic stimulation protocol. Black traces show the two synaptic inputs stimulated individually, blue traces show the predicted response for simultaneous activation (assuming linear summation) and red traces show the measured response for intermediate strength stimulation. The within-branch response was supralinear, whereas the response between branches was linear. This effect was blocked by a selective NMDAR (N-methyl-d-aspartate receptor) antagonist. b | Responses for the two input scenarios; the between-branches configuration (shown in green; the dashed line indicates linearity) and the within-branch configuration (shown in red). The nonlinear effects of NMDARs are seen when excitatory postsynaptic potentials (EPSPs) are a few millivolts in amplitude. However, these experiments were carried out in the presence of a GABAA (α-aminobutyric acid type A) receptor antagonist, which may favour the occurrence of NMDA spikes161. c | The difference between the arithmetic sum of individual inputs (shown by blue squares) and paired-pulse protocols with different intervals between the pulses. The supralinear response of the within-branch configuration occurs when the two synaptic inputs occur within approximately 40 ms indicates that synaptic NMDAR activation has a ‘memory’ of prior input onto the branch over this timescale. d | A cartoon of a pyramidal cell with ni clustered synaptic inputs on each of the dendritic branches. A nonlinear dendritic mechanism, such as NMDAR spikes, introduces a nonlinear sigmoidal input–output function (S(ni)) to each of the subcompartments. The weights of the subcompartments (αi) are then combined with the somatic spike threshold nonlinearity (g) to produce output (y). It has been proposed that the presence of multiple dendritic subcompartments each with a nonlinear thresholding element could enable an individual pyramidal cell to act like a two-layer network of neurons, thereby enhancing its computational power. Parts a–c modified, with permission, from Nature Neuroscience REF. 156 © (2004) Macmillan Publishers Ltd. All rights reserved. Part d modified, with permission, from Ref. 157 © (2003) Elsevier.  
	Conclusions
	Figure 8 | Summary of biophysical mechanisms underlying rapid neuronal arithmetic. Mechanisms that may underlie rapid addition (shown in red) and subtraction (shown in orange) or multiplication (shown in blue) and division (shown in green) of synaptic input in cells with simple and complex morphologies. The upper two rows correspond to sustained rate-coded signalling while the bottom two correspond to  sparse temporally coded signalling. As indicated by the graphs on the left, rows one and three correspond to additive operations, whereas rows two and four correspond to multiplicative operations. Overlap of boxes between additive and multiplicative regions indicates mixed operations. DAP, depolarizing after potential; NMDA, N-methyl-d-aspartate; STD, short term depression.
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