Neurovascular Mechanisms of Inflammation and Tissue Repair
Our lab studies mechanisms of neurovascular regulation of inflammation and tissue repair. Our current research focuses on identifying the molecular and cellular interface that blood proteins utilize to interact with nervous system cells and change their functions. Our ultimate goal is to target these interactions for therapeutic intervention in neurologic diseases.
Our laboratory studies the mechanisms of adult neurogenesis and neuronal replacement. Contrary to the dogma held for over a century, some populations of neurons continue to be produced in juvenile and adult brains. Basic mechanisms of neural development can be studied in a fully assembled brain, providing key insights into the nature of neural stem cells, mechanisms of neuronal migration, and neural maturation.
Nearly 3 million Americans suffer from epilepsy. In one third of these patients available antiepileptic drugs or invasive surgical procedures are not effective. With an increased understanding of the molecular, electrophysiological and genetic bases of the epilepsies, hope for a cure emerges. Understanding the fundamental basis of epilepsies, especially those that occur in children, and using this information to develop novel treatments is the mission of our laboratory.
Neurons are finely tuned to extract computationally relevant features from synaptic inputs. This process is influenced heavily by neuromodulators, which can transiently retune neuronal processing by altering the properties of the membrane receptors and channels involved in synaptic transmission and cell excitability. Drugs of abuse disrupt neuromodulator signaling, ultimately producing long-lasting changes in the neuronal circuits that underlie addiction establishment, expression, and relapse.
Research in my laboratory focuses primarily on the question of how experience, particularly during early life, shapes the functioning of the nervous system. To approach this question we are currently using a combination of behavioral and neurophysiological techniques to investigate the mechanisms underlying vocal learning in songbirds.